Publications by authors named "Brahmmananda Rao C V S"

A simple and efficient route to develop various novel functionalized MOF materials for rapid and excellent recovery of U(vi) from aqueous medium, along with selective sensing has been demonstrated in the present study. In this connection, a set of four distinct post synthetically modified (PSM) iso-reticular metal organic frameworks were synthesized from IRMOF-3 namely, IRMOF-PC (2-pyridine carboxaldehyde), IRMOF-GA (glutaric anhydride), IRMOF-SMA (sulfamic acid), and IRMOF-DPC (diphenylphosphonic chloride) for the recovery and sensing of U(vi) from aqueous medium. The MOFs were characterized by Fourier transform infrared spectroscopy (FTIR), powder XRD, BET surface area analysis, thermogravimetric analysis (TGA), NMR (C, H and P), Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).

View Article and Find Full Text PDF

A set of four new functionalized MOFs, namely MOF-LIC-DPPC, MOF-LIC-GA, MOF-LIC-PCA and MOF-LIC-SA, were synthesized the post-synthetic modification (PSM) strategy using MOF-LIC-1 for efficient extraction of U(VI) and Th(IV) from an aqueous medium. FTIR, powder XRD, TGA and SEM-EDX were employed for characterization of the functionalized MOFs. Sorption studies for U(VI) and Th(IV) were performed by monitoring the pH and contact time.

View Article and Find Full Text PDF

A simple and reliable colorimetric probe ,'-bis-(4-diethylamino-2-hydroxybenzylidene)-1,10-phenanthroline-2,9-carbohydrazide (L) has been synthesised by reacting 4-(diethylamino)salicylaldehyde with 1,10-phenanthroline-2,9-dicarbohydrazide. The sensing ability of L was studied by its interactions with various f-block metal ions and other selected metal ions from s- and d-block by colorimetry, UV-visible spectrophotometry, and smartphone integrated red-green-blue (RGB) model in DMSO : HO (7 : 3, v/v). The pale-yellow colour of L turns to wine-red upon interaction with uranyl ions (UO) and yellow-orange in the presence of Th, Zr, Fe, and Lu ions.

View Article and Find Full Text PDF

The electronic structure of ligands with phosphoryl and carbonyl binding sites and their complexation behavior with uranyl nitrate were investigated using density functional theory (DFT). The quantum chemical calculations indicate that the electronic charges on both phosphoryl and carbonyl groups are more polarized toward oxygen atoms in isolated ligands. This effect is predominant in the case of complexes of the former.

View Article and Find Full Text PDF

Among the varied classes of weak hydrogen bond, the CHO type is one of immense interest as it governs the finer structures of biological and chemical molecules, hence determining their functionalities. In the present work, this weak hydrogen bond has been shown to strongly influence the complexation behaviour of uranyl nitrate [UO2(NO3)2] with diamyl-H-phosphonate (DAHP) and its branched isomer disecamyl-H-phosphonate (DsAHP). The structures of the bare ligands and complexes have been optimized by density functional theory (DFT) calculations.

View Article and Find Full Text PDF

In this paper, a new Th ion-selective chromogenic sensor (L) was developed by reacting 1,10-phenanthroline-2,9-dicarbohydrazide with 2-hydroxy naphthaldehyde. The sensing ability of L toward Th was investigated in solution and paper strips loaded with L using spectrophotometric and colorimetric methods. The selective interaction of L was examined with various f-metal ions and other selected metal ions from s-block and d-block elements.

View Article and Find Full Text PDF

The structural effects of the carbon chain on the extraction of actinides by organo-phosphorus extractants have been examined experimentally and by computation. Branched butyl H-phosphonates and their linear chain isomer, n-butyl H-phosphonate (DBHP), were synthesised and characterised using IR, NMR and GC-MS techniques. Their physical properties viz.

View Article and Find Full Text PDF

Tri-n-butyl phosphate (TBP), used as the extractant in nuclear fuel reprocessing, shows superior extraction abilities for Pu(IV) over a large number of fission products including Zr(IV). We have applied density functional theory (DFT) calculations to explain this selectivity by investigating differences in electronic structures of Pu(NO3)4·2TBP and Zr(NO3)4·2TBP complexes. On the basis of our quantum chemical calculations, we have established the lowest energy electronic states for both complexes; the quintet is the ground state for the former, whereas the latter exists in the singlet spin state.

View Article and Find Full Text PDF

The conformations of triallyl phosphate (TAP) were studied using matrix isolation infrared spectroscopy and density functional theory (DFT) calculations. TAP was trapped in N2, Ar, and Xe matrixes at 12 K using an effusive source and the resultant infrared spectra recorded. The computational analysis on conformers of TAP is a challenging problem due to the presence of the large number of conformations.

View Article and Find Full Text PDF