Publications by authors named "Brahma Ghosh"

Photoaffinity labeling (PAL) methodologies have proven to be instrumental for the unbiased deconvolution of protein-ligand binding events in physiologically relevant systems. However, like other chemical proteomic workflows, they are limited in many ways by time-intensive sample manipulations and data acquisition techniques. Here, we describe an approach to address this challenge through the innovation of a carboxylate bead-based protein cleanup procedure to remove excess small-molecule contaminants and couple it to plate-based, proteomic sample processing as a semiautomated solution.

View Article and Find Full Text PDF

Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B).

View Article and Find Full Text PDF

Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications.

View Article and Find Full Text PDF

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells.

View Article and Find Full Text PDF

Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO.

View Article and Find Full Text PDF

β-Strands are a fundamental component of protein structure, and these extended peptide regions serve as binding epitopes for numerous protein-protein complexes. However, synthetic mimics that capture the conformation of these epitopes and inhibit selected protein-protein interactions are rare. Here we describe covalent and noncovalent β-hairpin mimics of an extended strand region mediating the Tcf4/β-catenin interaction.

View Article and Find Full Text PDF

A novel series of guanidinebenzoate enteropeptidase and trypsin dual inhibitors has been discovered and SAR studies were conducted. Optimization was focused on improving properties for gut restriction, including increased aqueous solubility, lower cellular permeability, and reduced oral bioavailability. Lead compounds were identified with efficacy in a mouse fecal protein excretion study.

View Article and Find Full Text PDF

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation.

View Article and Find Full Text PDF

Human plasma-derived 1-antitrypsin (AAT) delivered by intravenous infusion is used as augmentation therapy in patients with emphysema who have a genetic mutation resulting in deficiency of AAT. Inhalation is an alternative route of administration that can potentially increase the efficacy and convenience of treatment. This study was conducted to determine whether delivery to the lungs, initially via the intratracheal (IT) route of administration, would deliver efficacious levels of a recombinant AAT (rAAT) to the site of action in the lungs in mice.

View Article and Find Full Text PDF

Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles.

View Article and Find Full Text PDF

Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E.

View Article and Find Full Text PDF

The structure of the ring-opened product from direct oxidation of meso-tetraarylporphyrins has been controversial for three decades. Herein we show that bilitrienones 2 are obtained from oxidation of metal-free dodecasubstituted porphyrins 1 in the presence of sodium nitrite, trifluoroacetic acid and air oxygen. The presence of the para-nonyl groups in 1b stabilized the corresponding bilitrienone 2b, which was characterized by X-ray crystallography.

View Article and Find Full Text PDF

A CEM cell cDNA T7 phage display library was prepared and used to screen for activating enzymes of phosphoramidate prodrugs of AZT monophosphate. Although, inefficient compared to ribonucleotide based phosphoramidates, hHint 1 was identified as the likely intracellular pronucleotide activating enzyme.

View Article and Find Full Text PDF

Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed.

View Article and Find Full Text PDF

Hint1 is a homodimeric protein and member of the ubiquitous HIT superfamily. Hint1 catalyzes the hydrolysis of purine phosphoramidates and lysyl-adenylate generated by lysyl-tRNA synthetase (LysRS). To determine the importance of homodimerization on the biological and catalytic activity of Hint1, the dimer interface of human Hint1 (hHint1) was destabilized by replacement of Val(97) of hHint1 with Asp, Glu, or Arg.

View Article and Find Full Text PDF

To facilitate the delivery of nucleotide-based therapeutics to cells and tissues, a variety of pronucleotide approaches have been developed. Our laboratory and others have demonstrated that nucleoside phosphoramidates can be activated intracellularly to the corresponding 5'-monophosphate nucleotide and that histidine triad nucleotide binding proteins (Hints) are potentially responsible for their bioactivation. Hints are conserved and ubiquitous enzymes that hydrolyze phosphoramidate bonds between nucleoside 5'-monophosphate and an amine leaving group.

View Article and Find Full Text PDF