Endothelial dysfunction featuring insufficient endothelial nitric oxide synthase (eNOS) and accompanying nitric oxide (NO) deficiency is implicated in the pathogenesis of cardiovascular diseases. Restoring endothelial NO represents a promising approach to treating cerebrovascular diseases, including stroke. Low-power near-infrared (NIR) light shows diverse beneficial effects, broadly defined as photobiomodulation (PBM).
View Article and Find Full Text PDFAn early event in the pathology of traumatic brain injury (TBI) is a reduction in cerebral blood flow (CBF), which exacerbates secondary injury development and inhibits brain recovery. The endogenous cannabinoid system signalling (eCBs) might be critical in TBI recovery due to modulating synaptic activity and exerting neuroprotective and anti-inflammatory effects. In the brain, eCBs predominantly occur at cannabinoid receptor type 1 via the eCB 2-arachidonoylglycerol (2-AG).
View Article and Find Full Text PDFAdv Exp Med Biol
October 2024
Background: The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury.
View Article and Find Full Text PDFIntroduction: Patients who suffer severe traumatic brain injury (sTBI) and cerebral vasospasm (CVS) frequently have posttraumatic cerebral ischemia (PCI).
The Research Question: was to study changes in cerebral microcirculatory bed parameters in sTBI patients with CVS and with or without PCI.
Material And Methods: A total of 136 severe TBI patients were recruited in the study.
Background: Intrahospital transportation (IHT) of patients with traumatic brain injury (TBI) is common and may have adverse consequences, incurring inherent risks. The data on the frequency and severity of clinical complications linked with IHT are contradictory, and there is no agreement on whether it is safe or potentially challenging for neurocritical care unit patients. Continuous intracranial pressure (ICP) monitoring is essential in neurointensive care.
View Article and Find Full Text PDFIntroduction: The relationship between arterial and venous blood flow in moderate-to-severe traumatic brain injury (TBI) is poorly understood.
The Research Question: was to compare differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe TBI as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow.
Material And Methods: Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (severe TBI after the surgery).
Traumatic brain injury (TBI) ultimately leads to a reduction in the cerebral metabolic rate for oxygen due to ischemia. Previously, we showed that 2 ppm i.v.
View Article and Find Full Text PDFUnlabelled: We assessed net water uptake changes (NWU) in regions of posttraumatic ischemia in relation to cerebral microcirculation mean transit time (MTT) at moderate-to-severe traumatic brain injury (TBI).
Materials And Methods: 128 moderate-to-severe traumatic brain injury patients (44 women, 84 men, age: 37 ± 12 years) were stratified into 3 groups: Marshall 2-3: 48 patients, Marshall 4: 44 patients, Marshall 5: 36 patients. The groups were matched by sex and age.
We compared differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe traumatic brain injury (TBI) as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow. Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (diffuse severe TBI after the surgery). Arterial and venous CBF was measured by PCT in both the middle cerebral arteries (CBFmca) and the upper sagittal sinus (CBFuss).
View Article and Find Full Text PDFThere is strong evidence that augmentation of the brain's waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain's waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon.
View Article and Find Full Text PDFIntraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation.
View Article and Find Full Text PDFOver sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode.
View Article and Find Full Text PDFBackground: The influence of cerebral edema and resultant secondary complications on the clinical outcome of traumatic brain injury (TBI) is well known. Clinical studies of brain water homeostasis dynamics in TBI are limited, which determines the relevance of our work. The purpose is to study changes in brain water homeostasis after TBI of varying severity compared to corresponding cerebral microcirculation parameters.
View Article and Find Full Text PDFObjective: Since the start of the SARS-CoV-2 (COVID-19) pandemic, it has become clear that the brain is one of the main targets for acute and chronic damage. Although neurodegenerative changes have yet to be investigated, there is already a large body of data on damage to its fiber tracts. A mobile eye tracker is possibly one of the best tools to study such damage in a COVID hospital setting.
View Article and Find Full Text PDFIntroduction: Cerebral autoregulation is an essential mechanism for maintaining cerebral blood flow stability. The phenomenon of transtentorial intracranial pressure (ICP) gradient after neurosurgical operations, complicated by edema and intracranial hypertension in the posterior fossa, has been described in clinical practice but is still underinvestigated. The aim of the study was to compare autoregulation coefficients (i.
View Article and Find Full Text PDFTraumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS.
View Article and Find Full Text PDFThe progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM).
View Article and Find Full Text PDF