Publications by authors named "Bragheri F"

We present combined theoretical and experimental work investigating the angle-resolved phases of the photoionization process driven by a two-color field consisting of an attosecond pulse train and an infrared pulse in an ensemble of randomly oriented molecules. We derive a general form for the two-color photoelectron (and time-delay) angular distribution valid also in the case of chiral molecules and when relative polarizations of the photons contributing to the attosecond photoelectron interferometer differ. We show a comparison between the experimental data and theoretical predictions in an ensemble of methane and deuteromethane molecules, discussing the effect of nuclear dynamics on the photoionization phases.

View Article and Find Full Text PDF

Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms.

View Article and Find Full Text PDF

Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy.

View Article and Find Full Text PDF

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges.

View Article and Find Full Text PDF

Femtosecond laser micromachining is becoming an established fabrication technique for transparent material processing in three dimensions [...

View Article and Find Full Text PDF

We present an optimization of the dynamics of integrated optical switches based on thermal phase shifters. These devices have been fabricated in the volume of glass substrates by femtosecond laser micromachining and are constituted by an integrated Mach-Zehnder interferometer and a superficial heater. Simulations, surface micromachining and innovative layouts allowed us to improve the temporal response of the optical switches down to a few milliseconds.

View Article and Find Full Text PDF

Femtosecond laser micromachining (FLM) of fused silica allows for the realization of three-dimensional embedded optical elements and microchannels with micrometric feature size. The performances of these components are strongly affected by the machined surface quality and residual roughness. The polishing of 3D buried structures in glass was demonstrated using different thermal annealing processes, but precise control of the residual roughness obtained with this technique is still missing.

View Article and Find Full Text PDF

Yield stress materials deform as elastic solids or flow as viscous liquids, depending on the applied stress, which also allows them to trap particles below a certain size or density threshold. To investigate the conditions for such a transition at the microscale, we use an optofluidic microrheometer, based on the scattering of an infrared beam onto a microbead, which reaches forces in the nN scale. We perform creep experiments on a model soft material composed of swollen microgels, determining the limits of linear response and yield stress values, and observe quantitative agreement with bulk measurements.

View Article and Find Full Text PDF

We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation.

View Article and Find Full Text PDF

Single-cell analysis techniques are fundamental to study the heterogeneity of cellular populations, which is the basis to understand several biomedical mechanisms. Light-sheet fluorescence microscopy is a powerful technique for obtaining high-resolution imaging of individual cells, but the complexity of the setup and the sample mounting procedures limit its overall throughput. In our work, we present an optofluidic microscope-on-chip with integrated microlenses for light-sheet shaping and with a fluidic microchannel that allows the automatic and continuous delivery of samples of a few tens of microns in size.

View Article and Find Full Text PDF

We propose and demonstrate an on-chip optofluidic device allowing active oscillatory microrheological measurements with sub-μL sample volume, low cost and high flexibility. Thanks to the use of this optofluidic microrheometer it is possible to measure the viscoelastic properties of complex fluids in the frequency range 0.01-10 Hz at different temperatures.

View Article and Find Full Text PDF

Since the pioneering work of Ashkin and coworkers, back in 1970, optical manipulation gained an increasing interest among the scientific community. Indeed, the advantages and the possibilities of this technique are unsubtle, allowing for the manipulation of small particles with a broad spectrum of dimensions (nanometers to micrometers size), with no physical contact and without affecting the sample viability. Thus, optical manipulation rapidly found a large set of applications in different fields, such as cell biology, biophysics, and genetics.

View Article and Find Full Text PDF

Last decade's advancements in optofluidics allowed obtaining an ever increasing integration of different functionalities in lab on chip devices to culture, analyze, and manipulate single cells and entire biological specimens. Despite the importance of optical imaging for biological sample monitoring in microfluidics, imaging is traditionally achieved by placing microfluidics channels in standard bench-top optical microscopes. Recently, the development of either integrated optical elements or lensless imaging methods allowed optical imaging techniques to be implemented in lab on chip systems, thus increasing their automation, compactness, and portability.

View Article and Find Full Text PDF
Article Synopsis
  • The research explores the complex viscosity of gel-forming fluids, specifically focusing on a DNA hydrogel, using an innovative microfluidic-based method to better understand its behavior.
  • The study shows that as the temperature changes, the hydrogel transitions from a Newtonian fluid to a non-Newtonian, shear-thinning fluid, revealing various intermediate states along the way.
  • By understanding the network structure and bond energy of the hydrogel, the researchers can predict its behavior using established models in rheology.
View Article and Find Full Text PDF

Three-dimensional (3D) particle focusing in microfluidics is a fundamental capability with a wide range of applications, such as on-chip flow cytometry, where high-throughput analysis at the single-cell level is performed. Currently, 3D focusing is achieved mainly in devices with complex layouts, additional sheath fluids, and complex pumping systems. In this work, we present a compact microfluidic device capable of 3D particle focusing at high flow rates and with a small footprint, without the requirement of external fields or lateral sheath flows, but using only a single-inlet, single-outlet microfluidic sequence of straight channels and tightly curving vertical loops.

View Article and Find Full Text PDF

Microfluidic lenses are relevant optical components for sensing application in lab-on-a-chip devices, guaranteeing a robust alignment of the elements, a high level of compactness and tunable optical properties. In this work we describe an innovative integrated in-plane microfluidic lens. The device shows both an optimized shape capable of reducing spherical aberrations and periodically tunable optical properties.

View Article and Find Full Text PDF

Understanding of material behaviour at nanoscale under intense laser excitation is becoming critical for future application of nanotechnologies. Nanograting formation by linearly polarised ultra-short laser pulses has been studied systematically in fused silica for various pulse energies at 3D laser printing/writing conditions, typically used for the industrial fabrication of optical elements. The period of the nanogratings revealed a dependence on the orientation of the scanning direction.

View Article and Find Full Text PDF

This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization.

View Article and Find Full Text PDF

We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231.

View Article and Find Full Text PDF

Selective plane illumination microscopy can image biological samples at a high spatiotemporal resolution. Complex sample preparation and system alignment normally limit the throughput of the method. Using femtosecond laser micromachining, we created an integrated optofluidic device that allows obtaining continuous flow imaging, three-dimensional reconstruction and high-throughput analysis of large multicellular spheroids at a subcellular resolution.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips.

View Article and Find Full Text PDF

Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 - 35 °C. By means of an integrated optical stretcher, we observe that cells' optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature.

View Article and Find Full Text PDF

We present a portable optofluidic switch using a ferrofluid plug in a commercially produced microfluidic chip with waveguides added via femtosecond laser micromachining (FLM). FLM enabled the one-step fabrication of highly reproducible, perfectly aligned integrated waveguides orthogonally crossing an existing microfluidic channel. In the "ON" state for each output, the ferrofluid plug is outside the intersection and input light arrives at the output with relatively small loss.

View Article and Find Full Text PDF