Publications by authors named "Bradyn Parker"

Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels.

View Article and Find Full Text PDF

The mechanical and architectural properties of the three-dimensional (3D) tissue microenvironment can have large impacts on cellular behavior and phenotype, providing cells with specialized functions dependent on their location. This is especially apparent in macrophage biology where the function of tissue resident macrophages is highly specialized to their location. 3D bioprinting provides a convenient method of fabricating biomaterials that mimic specific tissue architectures.

View Article and Find Full Text PDF

The functionalization of emulsion-templated porous polymers (polyHIPEs) utilizing modern and efficient chemistries is an important avenue for tailoring the properties of these scaffolds for specific and specialized applications. Herein, tetrazole photoclick chemistry is utilized for the efficient functionalization of polyHIPEs synthesized from various monomer systems and polymerization chemistries. Using both radical polymerization and thiol-ene polymerization, polyHIPEs with well-defined, interconnected open-cell morphologies are synthesized with tetrazole concentrations ranging from 0 to 5 w/v %, with the pore diameters ranging from 3 to 24 μm.

View Article and Find Full Text PDF

Integrating neurons into digital systems may enable performance infeasible with silicon alone. Here, we develop DishBrain, a system that harnesses the inherent adaptive computation of neurons in a structured environment. In vitro neural networks from human or rodent origins are integrated with in silico computing via a high-density multielectrode array.

View Article and Find Full Text PDF

Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic.

View Article and Find Full Text PDF

Three-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs).

View Article and Find Full Text PDF

Liquid biopsies that analyze circulating tumor DNA (ctDNA) hold great promise in the guidance of clinical treatment for various cancers. However, the innate characteristics of ctDNA make it a difficult target: ctDNA is highly fragmented, and found at very low concentrations, both in absolute terms and relative to wildtype species. Clinically relevant target sequences often differ from the wildtype species by a single DNA base pair.

View Article and Find Full Text PDF

Chemokines and their receptors collectively orchestrate the trafficking of leukocytes in normal immune function and inflammatory diseases. Different chemokines can induce distinct responses at the same receptor. In comparison to monocyte chemoattractant protein-1 (MCP-1; also known as CCL2), the chemokines MCP-2 (CCL8) and MCP-3 (CCL7) are partial agonists of their shared receptor CCR2, a key regulator of the trafficking of monocytes and macrophages that contribute to the pathology of atherosclerosis, obesity, and type 2 diabetes.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Bradyn Parker"

  • - Bradyn Parker's recent research primarily focuses on the development of bioactive materials for biomedical applications, particularly in creating innovative scaffolds and hydrogels that support tissue regeneration and cellular functions.
  • - His studies report successful methodologies, such as 3D printing and emulsion templating, to engineer scaffolds with tailored microarchitectures that enhance bone formation and vascularization, demonstrating significant potential for clinical applications.
  • - Additionally, Parker explores the intersection of biology and technology, investigating how in vitro neural networks can exhibit behavior akin to sentience when integrated into digital environments, suggesting novel pathways for brain-computer interfaces and neurotechnology.