Publications by authors named "Brady S Hardiman"

Structural diversity (SD) characterizes the volume and physical arrangement of biotic components in an ecosystem which control critical ecosystem functions and processes. LiDAR data provides detailed 3-D spatial position information of components and has been widely used to calculate SD. However, the intensive computation of SD metrics from extensive LiDAR datasets is time-consuming and challenging for researchers who lack access to high-performance computing resources.

View Article and Find Full Text PDF

Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch).

View Article and Find Full Text PDF

Differential disturbance severity effects on forest vegetation structure, species diversity, and net primary production (NPP) have been long theorized and observed. Here, we examined these factors concurrently to explore the potential for a mechanistic pathway linking disturbance severity, changes in light environment, leaf functional response, and wood NPP in a temperate hardwood forest.Using a suite of measurements spanning an experimental gradient of tree mortality, we evaluated the direction and magnitude of change in vegetation structural and diversity indexes in relation to wood NPP.

View Article and Find Full Text PDF

Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub-set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation.

View Article and Find Full Text PDF

Structure-function relationships are central to many ecological paradigms. Chief among these is the linkage of net primary production (NPP) with species diversity and canopy structure. Using the National Ecological Observatory Network (NEON) as a subcontinental-scale research platform, we examined how temperate-forest NPP relates to several measures of site-level canopy structure and tree species diversity.

View Article and Find Full Text PDF

Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology.

View Article and Find Full Text PDF

Tropical peat swamp forests (PSF) are one of the most carbon dense ecosystems on the globe and are experiencing substantial natural and anthropogenic disturbances. In this study, we combined direct field sampling and airborne LiDAR to empirically quantify forest structure and aboveground live biomass (AGB) across a large, intact tropical peat dome in Northwestern Borneo. Moving up a 4 m elevational gradient, we observed increasing stem density but decreasing canopy height, crown area, and crown roughness.

View Article and Find Full Text PDF

Carbon (C) uptake rates in many forests are sustained, or decline only briefly, following disturbances that partially defoliate the canopy. The mechanisms supporting such functional resistance to moderate forest disturbance are largely unknown. We used a large-scale experiment, in which > 6700 Populus (aspen) and Betula (birch) trees were stem-girdled within a 39-ha area, to identify mechanisms sustaining C uptake through partial canopy defoliation.

View Article and Find Full Text PDF

The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus).

View Article and Find Full Text PDF