Publications by authors named "Brady D Goulden"

Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis.

View Article and Find Full Text PDF

The polyphosphoinositides (PPIn) are central regulatory lipids that direct membrane function in eukaryotic cells. Understanding how their synthesis is regulated is crucial to revealing these lipids' role in health and disease. PPIn are derived from the major structural lipid, phosphatidylinositol (PI).

View Article and Find Full Text PDF

Class I phosphoinositide 3-OH kinase (PI3K) signaling is central to animal growth and metabolism, and pathological disruption of this pathway affects cancer and diabetes. However, the specific spatial/temporal dynamics and signaling roles of its minor lipid messenger, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P), are not well understood. This owes principally to a lack of tools to study this scarce lipid.

View Article and Find Full Text PDF

Lipids convey both structural and functional properties to eukaryotic membranes. Understanding the basic lipid composition and the dynamics of these important molecules, in the context of cellular membranes, can shed light on signaling, metabolism, trafficking, and even membrane identity. The development of genetically encoded lipid biosensors has allowed for the visualization of specific lipids inside individual, living cells.

View Article and Find Full Text PDF

Phosphoinositide (PtdInsP) lipids recruit effector proteins to membranes to mediate a variety of functions including signal transduction and membrane trafficking. Each PtdInsP binds to a specific set of effectors through characteristic protein domains such as the PH, FYVE and PX domains. Domains with high affinity for a single PtdInsP species are useful as probes to visualize the distribution and dynamics of that PtdInsP.

View Article and Find Full Text PDF

Gradients of PtdIns4 between organelle membranes and the endoplasmic reticulum (ER) are thought to drive counter-transport of other lipids via non-vesicular traffic. This novel pathway requires the SAC1 phosphatase to degrade PtdIns4 in a 'cis' configuration at the ER to maintain the gradient. However, SAC1 has also been proposed to act in 'trans' at membrane contact sites, which could oppose lipid traffic.

View Article and Find Full Text PDF