Publications by authors named "Bradshaw N"

Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state.

View Article and Find Full Text PDF

The bacterial pathogen forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix principally composed of repurposed cytoplasmic proteins and extracellular DNA. These biofilms assemble during infections or under laboratory conditions by growth on medium containing glucose, but the intracellular signal for biofilm formation and its downstream targets were unknown. Here, we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP.

View Article and Find Full Text PDF

Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in , we created transgenic flies with second or third chromosome insertions of the human full-length ( gene fused to a UAS promotor (UAS-). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes.

View Article and Find Full Text PDF

How protein phosphatases achieve specificity for their substrates is a major outstanding question. PPM family serine/threonine phosphatases are widespread in bacteria and eukaryotes, where they dephosphorylate target proteins with a high degree of specificity. In bacteria, PPM phosphatases control diverse transcriptional responses by dephosphorylating anti-anti-sigma factors of the STAS domain family, exemplified by Bacillus subtilis phosphatases SpoIIE, which controls cell-fate during endospore formation, and RsbU, which initiates the general stress response.

View Article and Find Full Text PDF

Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase towards the active state.

View Article and Find Full Text PDF

The General Stress Response promotes survival of bacteria in adverse conditions, but how sensor proteins transduce species-specific signals to initiate the response is not known. The serine/threonine phosphatase RsbU initiates the General Stress Response in upon binding a partner protein (RsbT) that is released from sequestration by environmental stresses. We report that RsbT activates RsbU by inducing otherwise flexible linkers of RsbU to form a short coiled-coil that dimerizes and activates the phosphatase domains.

View Article and Find Full Text PDF

Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process.

View Article and Find Full Text PDF

An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress, prompted by the accumulation of misfolded or unfolded proteins, triggers the activation of the unfolded protein response (UPR) pathway to restore ER homeostasis. This stress response is implicated in the development of hepatocellular carcinoma (HCC). A biallelic mutation in SPRTN is currently the only known single-gene mutation implicated in the early onset of HCC.

View Article and Find Full Text PDF

Objective: To assess nuclear distribution element-like 1 (Ndel1) enzyme activity following acute administration of sodium nitroprusside (sNP) in a rodent model of schizophrenia (SCZ) and in a cohort of chronic SCZ patients.

Methods: Ndel1 activity was measured following sNP infusions in spontaneously hypertensive rats (SHR) (2.5 or 5.

View Article and Find Full Text PDF

The mental health Lived Experience workforce (also referred to as peer workforce) is growing rapidly internationally and within Australia. Peer workers are increasingly employed within multi- and inter-disciplinary teams, often directly supervised by mental health professionals such as nurses. Professional supervision has been identified as fundamental for implementing a sustainable peer workforce, but significant gaps in the literature remain, in particular, an understanding of appropriate supervision practices.

View Article and Find Full Text PDF

Background: Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1.

View Article and Find Full Text PDF

Background: It has been proposed that aggregation of specific proteins in the brain may be a pathological element in schizophrenia and other chronic disorders. Multiple such aggregating proteins have now been implicated through post mortem investigation, including NPAS3 (Neuronal PAS domain protein 3), dysbindin-1 (encoded by the DTNBP1, Dystrobrevin Binding Protein 1, gene) and TRIOBP (Trio-Binding Protein, multiple isoforms). While the presence of protein aggregates in the brain is interesting in terms of understanding pathology, it is impractical as a biomarker.

View Article and Find Full Text PDF

With molecularly well-defined and tailorable 2D structures, covalent organic frameworks (COFs) have emerged as leading material candidates for chemical sensing, storage, separation, and catalysis. In these contexts, the ability to directly and deterministically print COFs into arbitrary geometries will enable rapid optimization and deployment. However, previous attempts to print COFs have been restricted by low spatial resolution and/or post-deposition polymerization that limits the range of compatible COFs.

View Article and Find Full Text PDF

Background: Standard treatment for locally advanced cervical cancer is chemoradiotherapy, but many patients relapse and die of metastatic disease. We aimed to determine the effects on survival of adjuvant chemotherapy after chemoradiotherapy.

Methods: The OUTBACK trial was a multicentre, open-label, randomised, phase 3 trial done in 157 hospitals in Australia, China, Canada, New Zealand, Saudi Arabia, Singapore, and the USA.

View Article and Find Full Text PDF

Circadian rhythms play an essential part in many biological processes, and only three prokaryotic proteins are required to constitute a true post-translational circadian oscillator. The evolutionary history of the three Kai proteins indicates that KaiC is the oldest member and a central component of the clock. Subsequent additions of KaiB and KaiA regulate the phosphorylation state of KaiC for time synchronization.

View Article and Find Full Text PDF

The renin-angiotensin system (RAS) plays essential roles in maintaining peripheral cardiovascular homeostasis, with its potential roles in the brain only being recognized more recently. Angiotensin-I-converting enzyme (ACE) is the main component of the RAS, and it has been implicated in various disorders of the brain. ACE and other RAS components, including the related enzyme ACE2, angiotensin peptides and their respective receptors, can participate in the pathological state, as well as with potential to contribute to neuroprotection and/or to complement existing treatments for psychiatric illness.

View Article and Find Full Text PDF

Some proteins represent members of conserved families, meaning that their domain structure can be easily predicted by comparison to homologous proteins whose structures have been solved experimentally. Many other proteins, however, do not share significant detectable homology with other proteins, often as results of high amounts of coiled-coil structure and/or intrinsically unstructured regions. These proteins include many whose aggregation is linked to human disease.

View Article and Find Full Text PDF

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23).

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a widely used sensing technique for ultrasensitivity chemical sensing, biomedical detection, and environmental analysis. Because SERS signal is proportional to the fourth power of the local electric field, several SERS applications have focused on the design of plasmonic nanogaps to take advantage of the extremely strong near-field enhancement that results from plasmonic coupling, but few designs have focused on how SERS detection is affected by molecular orientation within these nanogaps. Here, we demonstrate a nanoparticle-on-metal metasurface designed for near-perfect optical absorption as a platform for Raman detection of highly oriented molecular analytes, including two-dimensional materials and aromatic molecules.

View Article and Find Full Text PDF

Bioactive glass (BG) is a frequently used biomaterial applicable in bone tissue engineering and known to be particularly effective when applied in nanoscopic dimensions. In this work, we employed the scalable reactive laser fragmentation in liquids method to produce nanosized 45S5 BG in the presence of light-absorbing Fe and Cu ions. Here, the function of the ions was twofold: (i) increasing the light absorption and thus causing a significant increase in laser fragmentation efficiency by a factor of 100 and (ii) doping the BG with bioactive metal ions up to 4 wt%.

View Article and Find Full Text PDF

An emerging phenomenon in our understanding of the pathophysiology of mental illness is the idea that specific proteins may form insoluble aggregates in the brains of patients, in partial analogy to similar proteinopathies in neurodegenerative diseases. Several proteins have now been detected as forming such aggregates in the brains of patients, including DISC1, dysbindin-1 and TRIOBP-1. Recently, neuronal PAS domain protein 3 (NPAS3), a known genetic risk factor for schizophrenia, was implicated through a V304I point mutation in a family with major mental illness.

View Article and Find Full Text PDF

Background: Aromatase inhibitors have been used empirically to treat a subset of patients with hormone receptor positive uterine leiomyosarcomas(LMS) and carcinosarcomas (UCS) mainly supported by retrospective data. We evaluated the activity of anastrozole in two rare cohorts; patients with recurrent/metastatic LMS and UCS enrolled in PARAGON, a basket trial of anastrozole in estrogen receptor (ER+)/progesterone receptor positive (PR+) gynecological cancers.

Method: An investigator-initiated, single-arm, prospective open-label trial of anastrozole 1 mg/day in patients with ER &/or PR + ve LMS or UCS with measurable disease, treated until progression or unacceptable toxicity.

View Article and Find Full Text PDF

Background: Hormonal therapies are commonly prescribed to patients with metastatic granulosa cell tumours (GCT), based on high response rates in small retrospective studies. Aromatase inhibitors (AIs) are reported to have high response rates and an accepted treatment option. We report the results of a phase 2 trial of an AI in recurrent/metastatic GCTs.

View Article and Find Full Text PDF