Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule.
View Article and Find Full Text PDFThione- and selone-containing compounds and their metal complexes show promise as antioxidants, as antithyroid drugs, and for applications in lasers and blue light-emitting diodes. Although Cu(i/ii), Co(ii), Ag(i), and Zn(ii) coordination to thione and selone ligands has been broadly studied and Fe(ii) plays an important role in oxidative damage, very few iron-thione complexes and no iron-selone complexes are reported. Novel Fe(ii)-containing thione and selone complexes of the formulae FeL2Cl2, [FeL2(CH3CN)2](2+), and [FeL4](2+), and {FeL'Cl2}n, (L = N,N'-dimethylimidazole selone (dmise), and thione (dmit); L' = bis(thioimidazolyl)ethane (ebit) and bis(selenoimidazolyl)ethane (ebis)) have been synthesized and characterized.
View Article and Find Full Text PDFExposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation.
View Article and Find Full Text PDFHydroxyl radical damage to DNA causes disease, and sulfur and selenium antioxidant coordination to hydroxyl-radical-generating Cu(+) is one mechanism for their observed DNA damage prevention. To determine how copper binding results in antioxidant activity, biologically relevant selone and thione ligands and Cu(+) complexes of the formula [Tpm*Cu(L)](+) [Tpm* = tris(3,5-dimethylpyrazolyl)methane; L = N,N'-dimethylimidazole selone or thione] were treated with H2O2 and the products analyzed by (1)H, (13)C{(1)H}, and (77)Se{(1)H} NMR spectroscopy, mass spectrometry, and X-ray crystallography. Upon H2O2 treatment, selone and thione binding to Cu(+) prevents oxidation to Cu(2+); instead, the chalcogenone ligand is oxidized.
View Article and Find Full Text PDF