Publications by authors named "Bradley P Sutliff"

To study the potential impacts of shear stress on cellulose nanocrystals (CNCs), a microcapillary rheometer was employed to repeatedly shear approximately 10 mL of 6 wt% aqueous CNC suspension at 25 °C and rates ranging from 1,000 s to 501,000 s. A 9 wt% CNC suspension was also tested at 316,000 s for comparison of concentration effects on the behavior of the suspensions. After monitoring viscosity for 25 steady shear measurements, the suspensions processed at 1,000 s decreased in viscosity by approximately 20 %.

View Article and Find Full Text PDF

A microcapillary rheometer was employed to study the rheological characteristics of CNCs at temperatures between 15 °C and 50 °C and aqueous concentrations between 1.5 wt% and 12.1 wt%, at rates up to 8 × 10 s.

View Article and Find Full Text PDF

Bioprinting has advanced drastically in the last decade, leading to many new biomedical applications for tissue engineering and regenerative medicine. However, there are still a myriad of challenges to overcome, with vast amounts of research going into bioprinter technology, biomaterials, cell sources, vascularization, innervation, maturation, and complex 4D functionalization. Currently, stereolithographic bioprinting is the primary technique for polymer resin bioinks.

View Article and Find Full Text PDF

Poly-[()-3-hydroxyalkanoate] biopolymers, or PHAs, are biocompatible and biodegradable polyesters that can be produced by diverse microbial strains. PHA polymers have found widespread uses in applications ranging from sustainable replacements of nonbiodegradable bulk-commodity plastics to biomaterials. However, further expansion into other markets and industries has generally been limited by the inability to chemically modify these polymers.

View Article and Find Full Text PDF