Using a series of time- and temperature-resolved synchrotron diffraction experiments, the relationship between multiple polymorphs of ZnCl and its respective hydrates is established. The δ-phase is found to be the pure anhydrous phase, while the α, β, and γ phases result from partial hydration. Diffraction, gravimetric, and calorimetric measurements across the entire ZnCl· HO, 0 > > ∞ composition range using ultrapure, doubly sublimed ZnCl establish the ZnCl : HO phase diagram.
View Article and Find Full Text PDFThe recently described ionic liquid structure of the three equivalent hydrate of zinc chloride (ZnCl2·R H2O, R = 3, existing as [Zn(OH2)6][ZnCl4]) explains the solubility of cellulose in this medium. Only hydrate compositions in the narrow range of 3 - x < R < 3 + x with x ≈ 1 dissolve cellulose. Once dissolved, the cellulose remains in solution up to the R = 9 hydrate.
View Article and Find Full Text PDFThe water/ZnCl(2) phase diagram in the vicinity of the 75 mol % water composition is reported, demonstrating the existence of a congruently melting phase. Single crystals of this 3-equiv hydrate were grown, and the crystal structure of [Zn(OH(2))(6)][ZnCl(4)] was determined. Synchrotron X-ray and neutron diffraction and IR and Raman spectroscopy along with reverse Monte Carlo modeling demonstrate that a CsCl-type packing of the molecular ions persists into the liquid state.
View Article and Find Full Text PDF