Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP.
View Article and Find Full Text PDFThe journal and authors wish to retract the article entitled 'Prediction of Ovarian Cancer Response to Therapy Based on Deep Learning Analysis of Histopathology Images' cited above [...
View Article and Find Full Text PDFBackground: Principal component analysis (PCA), a standard approach to analysis and visualization of large datasets, is commonly used in biomedical research for detecting similarities and differences among groups of samples. We initially used conventional PCA as a tool for critical quality control of batch and trend effects in multi-omic profiling data produced by The Cancer Genome Atlas (TCGA) project of the NCI. We found, however, that conventional PCA visualizations were often hard to interpret when inter-batch differences were moderate in comparison with intra-batch differences; it was also difficult to quantify batch effects objectively.
View Article and Find Full Text PDFBackground: Ovarian cancer remains the leading gynecological cause of cancer mortality. Predicting the sensitivity of ovarian cancer to chemotherapy at the time of pathological diagnosis is a goal of precision medicine research that we have addressed in this study using a novel deep-learning neural network framework to analyze the histopathological images.
Methods: We have developed a method based on the Inception V3 deep learning algorithm that complements other methods for predicting response to standard platinum-based therapy of the disease.
Purpose: Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking.
View Article and Find Full Text PDFSummary: Reverse-Phase Protein Array (RPPA) is a robust high-throughput, cost-effective platform for quantitatively measuring proteins in biological specimens. However, converting raw RPPA data into normalized, analysis-ready data remains a challenging task. Here, we present the RPPA SPACE (RPPA Superposition Analysis and Concentration Evaluation) R package, a substantially improved successor to SuperCurve, to meet that challenge.
View Article and Find Full Text PDFBackground: No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation.
Objective: To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases.
Purpose: Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC.
View Article and Find Full Text PDFWe analyzed the efficacy and mechanistic interactions of PARP inhibition (PARPi; olaparib) and CDK4/6 inhibition (CDK4/6i; palbociclib or abemaciclib) combination therapy in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC) models. We demonstrated that combined olaparib and palbociblib or abemaciclib treatment resulted in synergistic suppression of the p-Rb1-E2F1 signaling axis at the transcriptional and posttranslational levels, leading to disruption of cell-cycle progression and inhibition of E2F1 gene targets, including genes involved in DDR signaling/damage repair, antiapoptotic family members ( and ), , and neuroendocrine differentiation (NED) markers and In addition, olaparib + palbociclib or olaparib + abemaciclib combination treatment resulted in significantly greater growth inhibition and apoptosis than either single agent alone. We further showed that PARPi and CDK4/6i combination treatment-induced CDK1 inhibition suppressed p-S70-BCL-2 and increased caspase cleavage, while CDK1 overexpression effectively prevented the downregulation of p-S70-BCL-2 and largely rescued the combination treatment-induced cytotoxicity.
View Article and Find Full Text PDFMotivation: DNA methylation is a key epigenetic factor regulating gene expression. While promoter methylation has been well studied, recent publications have revealed that functionally important methylation also occurs in intergenic and distal regions, and varies across genes and tissue types. Given the growing importance of inter-platform integrative genomic analyses, there is an urgent need to develop methods to discover and characterize gene-level relationships between methylation and expression.
View Article and Find Full Text PDFAim: Tamoxifen (TAM) resistance remains a clinical issue in breast cancer. The authors previously reported that 15-hydroxyprostaglandin dehydrogenase () was significantly downregulated in tamoxifen-resistant (TAMr) breast cancer cell lines. Here, the authors investigated the relationship between HPGD expression, TAM resistance and prediction of outcome in breast cancer.
View Article and Find Full Text PDFPurpose: Consensus molecular subtyping (CMS) of colorectal cancer has potential to reshape the colorectal cancer landscape. We developed and validated an assay that is applicable on formalin-fixed, paraffin-embedded (FFPE) samples of colorectal cancer and implemented the assay in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory.
Experimental Design: We performed an experiment to build an optimal CMS classifier using a training set of 1,329 samples from 12 studies and validation set of 1,329 samples from 14 studies.
Non-coding RNAs (ncRNAs) are essential players in many cellular processes, from normal development to oncogenic transformation. Initially, ncRNAs were defined as transcripts that lacked an open reading frame (ORF). However, multiple lines of evidence suggest that certain ncRNAs encode small peptides of less than 100 amino acids.
View Article and Find Full Text PDFClin Cancer Res
September 2020
Purpose: Advances in prostate cancer lag behind other tumor types partly due to the paucity of models reflecting key milestones in prostate cancer progression. Therefore, we develop clinically relevant prostate cancer models.
Experimental Design: Since 1996, we have generated clinically annotated patient-derived xenografts (PDXs; the MDA PCa PDX series) linked to specific phenotypes reflecting all aspects of clinical prostate cancer.
High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens.
View Article and Find Full Text PDFClustered heat maps are the most frequently used graphics for visualization and interpretation of genome-scale molecular profiling data in biology. Construction of a heat map generally requires the assistance of a biostatistician or bioinformatics analyst capable of working in R or a similar programming language to transform the study data, perform hierarchical clustering, and generate the heat map. Our web-based Interactive Heat Map Builder can be used by investigators with no bioinformatics experience to generate high-caliber, publication quality maps.
View Article and Find Full Text PDFCurr Gastroenterol Rep
January 2019
Purpose Of Review: This review seeks to provide an informed prospective on the advances in molecular profiling and analysis of colorectal cancer (CRC). The goal is to provide a historical context and current summary on how advances in gene and protein sequencing technology along with computer capabilities led to our current bioinformatic advances in the field.
Recent Findings: An explosion of knowledge has occurred regarding genetic, epigenetic, and biochemical alterations associated with the evolution of colorectal cancer.
Clin Cancer Res
February 2018
We investigated MYCN-regulated molecular pathways in castration-resistant prostate cancer (CRPC) classified by morphologic criteria as adenocarcinoma or neuroendocrine to extend the molecular phenotype, establish driver pathways, and identify novel approaches to combination therapy for neuroendocrine prostate cancer (NEPC). Using comparative bioinformatics analyses of CRPC-Adeno and CRPC-Neuro RNA sequence data from public data sets and a panel of 28 PDX models, we identified a MYCN-PARP-DNA damage response (DDR) pathway that is enriched in CRPC with neuroendocrine differentiation (NED) and CRPC-Neuro. ChIP-PCR assay revealed that N-MYC transcriptionally activates PARP1, PARP2, BRCA1, RMI2, and TOPBP1 through binding to the promoters of these genes.
View Article and Find Full Text PDFClustered heatmaps are the most frequently used graphics for visualization of molecular profiling data in biology. However, they are generally rendered as static, or only modestly interactive, images. We have now used recent advances in web technologies to produce interactive "next-generation" clustered heatmaps (NG-CHM) that enable extreme zooming and navigation without loss of resolution.
View Article and Find Full Text PDFExtensive dysregulation of chromatin-modifying genes in clear cell renal cell carcinoma (ccRCC) has been uncovered through next-generation sequencing. However, a scientific understanding of the cross-talk between epigenetic and genomic aberrations remains limited. Here we identify three ccRCC epigenetic clusters, including a clear cell CpG island methylator phenotype (C-CIMP) subgroup associated with promoter methylation of VEGF genes (, and ).
View Article and Find Full Text PDFDeveloping realistic preclinical models using clinical samples that mirror complex tumor biology and behavior are vital to advancing cancer research. While cell line cultures have been helpful in generating preclinical data, the genetic divergence between these and corresponding primary tumors has limited clinical translation. Conversely, patient-derived xenografts (PDX) in colorectal cancer are highly representative of the genetic and phenotypic heterogeneity in the original tumor.
View Article and Find Full Text PDFUnlabelled: PathwaysWeb is a resource-based, well-documented web system that provides publicly available information on genes, biological pathways, Gene Ontology (GO) terms, gene-gene interaction networks (importantly, with the directionality of interactions) and links to key-related PubMed documents. The PathwaysWeb API simplifies the construction of applications that need to retrieve and interrelate information across multiple, pathway-related data types from a variety of original data sources. PathwaysBrowser is a companion website that enables users to explore the same integrated pathway data.
View Article and Find Full Text PDF