Publications by authors named "Bradley J Wilkes"

Restricted repetitive behaviors (RRB) encompass a variety of inflexible behaviors, which are diagnostic for autism spectrum disorder (ASD). Despite being requisite diagnostic criteria, the neurocircuitry of these behaviors remains poorly understood, limiting treatment development. Studies in translational animal models show environmental enrichment (EE) reduces the expression of RRB, although the underlying mechanisms are largely unknown.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) has long been recognized as a lifelong condition, but brain aging studies in autistic adults aged >30 years are limited. Free water, a novel brain imaging marker derived from diffusion MRI (dMRI), has shown promise in differentiating typical and pathological aging and monitoring brain degeneration. We aimed to examine free water and free water corrected dMRI measures to assess white and gray matter microstructure and their associations with age in autistic adults.

View Article and Find Full Text PDF

Restricted, repetitive behaviors are common symptoms in neurodevelopmental disorders including autism spectrum disorder. Despite being associated with poor developmental outcomes, repetitive behaviors remain poorly understood and have limited treatment options. Environmental enrichment attenuates the development of repetitive behaviors, but the exact mechanisms remain obscure.

View Article and Find Full Text PDF

Background: Restricted repetitive behavior (RRB) is one of two behavioral domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding brain alterations linked to RRB.

Methods: We utilized neuroimaging data from the National Institute of Mental Health Data Archive to assess basal ganglia and cerebellum structure in a cohort of children and adolescents with ASD compared to typically developing (TD) controls.

View Article and Find Full Text PDF

Objective measures of disease progression are critically needed in research on Parkinson's disease (PD) and atypical Parkinsonism but may be hindered by both practicality and cost. The Purdue Pegboard Test (PPT) is objective, has high test-retest reliability, and has a low cost. The goals of this study were to determine: (1) longitudinal changes in PPT in a multisite cohort of patients with PD, atypical Parkinsonism, and healthy controls; (2) whether PPT performance reflects brain pathology revealed by neuroimaging; (3) quantify kinematic deficits shown by PD patients during PPT.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) of the ventralis intermedius (VIM) nucleus of the thalamus has been successful in mitigating upper limb tremor, but the effect on gait and balance performance is unclear. Here, we aim to examine the effectiveness of VIM DBS on stride length variability, sway path length, and task-relevant tremor of various body segments in essential tremor (ET).

Methods: Seventeen ET individuals treated with DBS (ET DBS) and 17 age-and sex-matched healthy controls (HC) performed a postural balance and overground walking task.

View Article and Find Full Text PDF

Advanced diffusion imaging which accounts for complex tissue properties, such as crossing fibers and extracellular fluid, may detect longitudinal changes in widespread pathology in atypical Parkinsonian syndromes. We implemented fixel-based analysis, Neurite Orientation and Density Imaging (NODDI), and free-water imaging in Parkinson's disease (PD), multiple system atrophy (MSAp), progressive supranuclear palsy (PSP), and controls longitudinally over one year. Further, we used these three advanced diffusion imaging techniques to investigate longitudinal progression-related effects in key white matter tracts and gray matter regions in PD and two common atypical Parkinsonian disorders.

View Article and Find Full Text PDF

Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure.

View Article and Find Full Text PDF

Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA.

View Article and Find Full Text PDF

Auditory sensory over-responsivity (aSOR) is a frequently reported sensory feature of autism spectrum disorders (ASD); however, there is little consensus regarding its prevalence and severity. This cross-sectional study uses secondary data from the Autism Diagnostic Interview-Revised (ADI-R; Item 72: undue sensitivity to noise) housed in the US National Institute of Mental Health Data Archives to identify prevalence and severity of aSOR. Of the 4104 subjects with ASD ages 2-54 (M = 9, SD = 5.

View Article and Find Full Text PDF

DYT1 dystonia is an inherited movement disorder caused by a heterozygous trinucleotide (GAG) deletion in DYT1/TOR1A, coding for torsinA. Growing evidence suggests that the cerebellum plays a role in the pathogenesis of dystonia. Brain imaging of both DYT1 dystonia patients and animal models show abnormal activity in the cerebellum.

View Article and Find Full Text PDF

Objective: This study addresses an important problem in neurology, distinguishing tremor and ataxia using quantitative methods. Specifically, we aimed to quantitatively separate dysmetria, a cardinal sign of ataxia, from tremor in essential tremor (ET).

Methods: In Experiment 1, we compared 19 participants diagnosed with ET undergoing thalamic deep brain stimulation (DBS; ET ) to 19 healthy controls (HC).

View Article and Find Full Text PDF

Neurite orientation dispersion and density imaging (NODDI) uses a three-compartment model to probe brain tissue microstructure, whereas free-water (FW) imaging models two-compartments. It is unknown if NODDI detects more disease-specific effects related to neurodegeneration in Parkinson's disease (PD) and atypical Parkinsonism. We acquired multi- and single-shell diffusion imaging at 3 Tesla across two sites.

View Article and Find Full Text PDF

Restricted, repetitive behavior (RRB) involves sequences of responding with little variability and no obvious function. RRB is diagnostic for autism spectrum disorder (ASD) and a significant feature in several neurodevelopmental disorders. Despite its clinical importance, relatively little is known about how RRB is mediated by broader neural circuits.

View Article and Find Full Text PDF

Sensorimotor processing alterations are a growing focus in the assessment and treatment of Autism Spectrum Disorders (ASD). The rotational vestibulo-ocular reflex (rVOR), which functions to maintain stable vision during head movements, is a sensorimotor system that may be useful in understanding such alterations and their underlying neurobiology. In this study, we assessed post-rotary nystagmus elicited by continuous whole body rotation among children with high-functioning ASD and typically developing children.

View Article and Find Full Text PDF

Sensorimotor issues are of increasing focus in the assessment and treatment of Autism Spectrum Disorders (ASD). The oculomotor system is a sensorimotor network that can provide insights into functional neurobiology and has well-established methodologies for investigation. In this study, we assessed oculomotor performance among children with high functioning ASD and typically developing children, ages 6-12 years.

View Article and Find Full Text PDF