Porcine reproductive and respiratory syndrome (PRRS) virus is a severe threat to the global swine industry. Modified live virus vaccines (MLVs) for two PRRSV species (PRRSV-1 and PRRSV-2) are the most widely used approach to control PRRSV-caused diseases. For swine herds influenced by PRRSV-1 and PRRSV-2, how to rationalize MLV immunization strategies for robust and cross-protective immune responses has been a long-lasting need.
View Article and Find Full Text PDFThe gut microbiome plays an important role in the immune system development, maintenance of normal health status, and in disease progression. In this study, we comparatively examined the fecal microbiomes of Amish (rural) and non-Amish (urban) infants and investigated how they could affect the mucosal immune maturation in germ-free piglets that were inoculated with the two types of infant fecal microbiota (IFM). Differences in microbiome diversity and structure were noted between the two types of fecal microbiotas.
View Article and Find Full Text PDFAdjuvant potential of positively charged corn-derived nanoparticles (Nano-11) was earlier revealed in mice. We evaluated its adjuvant role to electrostatically adsorbed inactivated/killed swine influenza virus antigen (KAg) (Nano-11 + KAg) in pigs. Nano-11 facilitated the uptake of KAg by antigen presenting cells and induced secretion of proinflammatory cytokines.
View Article and Find Full Text PDFBackground: Influenza (flu) is a constant threat to humans and animals, and vaccination is one of the most effective ways to mitigate the disease. Due to incomplete protection induced by current flu vaccines, development of novel flu vaccine candidates is warranted to achieve greater efficacy against constantly evolving flu viruses.
Methods: In the present study, we used liposome nanoparticle (<200 nm diameter)-based subunit flu vaccine containing ten encapsulated highly conserved B and T cell epitope peptides to induce protective immune response against a zoonotic swine influenza A virus (SwIAV) H1N1 challenge infection in a pig model.
Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs.
View Article and Find Full Text PDF