Publications by authors named "Bradley H Holman"

Purpose: To evaluate the effect of ATP-sensitive potassium channel openers cromakalim prodrug 1 (CKLP1) and diazoxide on IOP in three independent mouse models of ocular hypertension.

Methods: Baseline IOP was measured in TGFβ2 overexpression, steroid-induced, and iris dispersion (DBA/2J) ocular hypertension mouse models, followed by once daily eyedrop administration with CKLP1 (5 mM) or diazoxide (5 mM). The IOP was measured in conscious animals with a handheld rebound tonometer.

View Article and Find Full Text PDF

To evaluate pharmacokinetic parameters and ocular hypotensive effects of cromakalim prodrug 1 (CKLP1) in normotensive large animal models. Optimal CKLP1 concentration was determined by dose response and utilized in short- (5-8 days) and long-term (60 days) evaluation in hound dogs ( = 5) and African Green Monkeys ( = 5). Blood pressure was recorded 3-5 times per week with a tail cuff.

View Article and Find Full Text PDF

Ocular hypertension occurs due to increased resistance to aqueous humor removal through the conventional outflow pathway. Unlike the proximal region of the conventional outflow pathway, the distal region has not been well studied, mostly due to lack of model systems. Here we describe isolation and characterization of human primary vascular distal outflow pathway (VDOP) cells from the distal region of the conventional outflow pathway.

View Article and Find Full Text PDF

Elevated intraocular pressure is the only treatable risk factor for glaucoma, an eye disease that is the leading cause of irreversible blindness worldwide. We have identified cromakalim prodrug 1 (CKLP1), a novel water-soluble ATP-sensitive potassium channel opener, as a new ocular hypotensive agent. To evaluate the pharmacokinetic and safety profile of CKLP1 and its parent compound levcromakalim, Dutch-belted pigmented rabbits were treated intravenously (0.

View Article and Find Full Text PDF

: Metabolic syndrome is a disorder characterized by a constellation of findings including truncal obesity, elevated blood pressure, abnormal cholesterol levels, and high blood glucose. Recent evidence suggests that metabolic syndrome may be associated with increased risk of age-related macular degeneration (AMD) and other eye diseases. Recently, C57BL/6J wild-type mice fed with a "fast food" diet consisting of high fat, cholesterol, and fructose-supplemented water showed unique systemic pathology consistent with metabolic syndrome and nonalcoholic steatohepatitis.

View Article and Find Full Text PDF

Purpose: Cromakalim prodrug 1 (CKLP1) is a water-soluble ATP-sensitive potassium channel opener that has shown ocular hypotensive properties in ex vivo and in vivo experimental models. To determine its mechanism of action, we assessed the effect of CKLP1 on aqueous humor dynamics and in combination therapy with existing ocular hypotensive agents.

Methods: Outflow facility was assessed in C57BL/6 mice by ex vivo eye perfusions and by in vivo constant flow infusion following CKLP1 treatment.

View Article and Find Full Text PDF

Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD).

View Article and Find Full Text PDF

Purpose: To identify downstream signaling molecules through which intraocular pressure (IOP) is lowered following treatment with the prostaglandin analog latanoprost.

Methods: Total RNA and protein isolated from primary human Schlemm's canal cells (n = 3) treated with latanoprost (free acid; 100 nM) were processed for quantitative PCR and Western blot analysis. IOP was evaluated in stanniocalcin-1 (STC-1-/-) and wild-type mice following treatment with latanoprost or Rho kinase inhibitor Y27632.

View Article and Find Full Text PDF

ATP-sensitive potassium (KATP) channel openers have emerged as potential therapeutics for the treatment of glaucoma, lowering intraocular pressure (IOP) in animal models and cultured human anterior segments. We have prepared water-soluble phosphate and dipeptide derivatives of the KATP channel opener cromakalim and evaluated their IOP lowering capabilities in vivo. In general, the phosphate derivatives proved to be more chemically robust and efficacious at lowering IOP with once daily dosing in a normotensive mouse model.

View Article and Find Full Text PDF

Elevated intraocular pressure (IOP) is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim.

View Article and Find Full Text PDF

Reduced intracranial pressure is considered a risk factor for glaucomatous optic neuropathies. All current data supporting intracranial pressure as a glaucoma risk factor comes from retrospective and prospective studies. Unfortunately, there are no relevant animal models for investigating this link experimentally.

View Article and Find Full Text PDF

Purpose: To evaluate the expression of ATP-sensitive potassium (K(ATP)) channel subunits and study the effect of K(ATP) channel openers diazoxide and nicorandil on intraocular pressure (IOP) in an in vivo mouse model.

Methods: Expression of K(ATP) channel subunits in normal C57BL/6 mouse eyes was studied by immunohistochemistry and confocal microscopy. Wild-type C57BL/6 mice were treated with K(ATP) channel openers diazoxide (n = 10) and nicorandil (n = 10) for 14 days.

View Article and Find Full Text PDF