Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture.
View Article and Find Full Text PDFThe evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight.
View Article and Find Full Text PDFWhile animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback.
View Article and Find Full Text PDFA new study of flight control in Drosophila using neurogenetic methods and a virtual reality flight arena has revealed a group of descending neurons that fully activate the flight motor and steer the fly by independent regulation of the left and right wings.
View Article and Find Full Text PDFAnimals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems.
View Article and Find Full Text PDFFlies execute their remarkable aerial maneuvers using a set of wing steering muscles, which are activated at specific phases of the stroke cycle [1-3]. The activation phase of these muscles-which determines their biomechanical output [4-6]-arises via feedback from mechanoreceptors at the base of the wings and structures unique to flies called halteres [7-9]. Evolved from the hindwings, the tiny halteres oscillate at the same frequency as the wings, although they serve no aerodynamic function [10] and are thought to act as gyroscopes [10-15].
View Article and Find Full Text PDFFlying insects rapidly stabilize after perturbations using both visual and mechanosensory inputs for active control. Insect halteres are mechanosensory organs that encode inertial forces to aid rapid course correction during flight but serve no aerodynamic role and are specific to two orders of insects (Diptera and Strepsiptera). Aside from the literature on halteres and recent work on the antennae of the hawkmoth Manduca sexta, it is unclear how other flying insects use mechanosensory information to control body dynamics.
View Article and Find Full Text PDF