Publications by authors named "Bradley G Wagner"

How COVID-19 vaccine is distributed within low- and middle-income countries has received little attention outside of equity or logistical concerns but may ultimately affect campaign impact in terms of infections, severe cases, or deaths averted. In this study we examined whether subnational (urban-rural) prioritization may affect the cumulative two-year impact on disease transmission and burden of a vaccination campaign using an agent-based model of COVID-19 in a representative COVID-19 Vaccines Global Access (COVAX) Advanced Market Commitment (AMC) setting. We simulated a range of vaccination strategies that differed by urban-rural prioritization, age group prioritization, timing of introduction, and final coverage level.

View Article and Find Full Text PDF

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility.

View Article and Find Full Text PDF

Streptococcus pneumoniae (SP) nasopharyngeal carriage studies are important to understand SP circulation prior to implementation of vaccination programs. It is generally not known how stable these carriage rates are over time. Carriage studies were conducted in Southern Israel during a decade preceding Pneumococcal Conjugate Vaccine (PCV) introduction.

View Article and Find Full Text PDF

The original article [1] did not contain comprehensive information regarding two authors' affiliations that may be considered a potential competing interest.

View Article and Find Full Text PDF

Individual-based models provide modularity and structural flexibility necessary for modeling of infectious diseases at the within-host and population levels, but are challenging to implement. Levels of complexity can exceed the capacity and timescales for students and trainees in most academic institutions. Here we describe the process and advantages of a multi-disease framework approach developed with formal software support.

View Article and Find Full Text PDF

Background: Gold mines represent a potential hotspot for Mycobacterium tuberculosis (Mtb) transmission and may be exacerbating the tuberculosis (TB) epidemic in South Africa. However, the presence of multiple factors complicates estimation of the mining contribution to the TB burden in South Africa.

Methods: We developed two models of TB in South Africa, a static risk model and an individual-based model that accounts for longer-term trends.

View Article and Find Full Text PDF
Article Synopsis
  • The post-2015 End TB Strategy aims to cut tuberculosis incidence by 50% and mortality by 75% by 2025, focusing on strategies in China, India, and South Africa to achieve these goals.
  • Researchers assessed various intervention scenarios and their costs, finding that expanding tuberculosis services could lead to significant health improvements and even cost savings in India and China, despite high initial funding needs.
  • Overall, the expansion of tuberculosis services appears to be cost-effective, offering substantial health benefits; however, further research is needed to identify the best intervention strategies for each country.
View Article and Find Full Text PDF

Background: The post-2015 End TB Strategy proposes targets of 50% reduction in tuberculosis incidence and 75% reduction in mortality from tuberculosis by 2025. We aimed to assess whether these targets are feasible in three high-burden countries with contrasting epidemiology and previous programmatic achievements.

Methods: 11 independently developed mathematical models of tuberculosis transmission projected the epidemiological impact of currently available tuberculosis interventions for prevention, diagnosis, and treatment in China, India, and South Africa.

View Article and Find Full Text PDF

Background: In the last 20 years, China ramped up a DOTS (directly observed treatment, short-course)-based tuberculosis (TB) control program with 80% population coverage, achieving the 2015 Millennium Development Goal of a 50% reduction in TB prevalence and mortality. Recently, the World Health Organization developed the End TB Strategy, with an overall goal of a 90% reduction in TB incidence and a 95% reduction in TB deaths from 2015-2035. As the TB burden shifts to older individuals and China's overall population ages, it is unclear if maintaining the current DOTS strategy will be sufficient for China to reach the global targets.

View Article and Find Full Text PDF

Antiretroviral (ARV)-based pre-exposure HIV interventions may soon be rolled out in resource-constrained Sub-Saharan African countries, but rollout plans have yet to be designed. Here we use geospatial modelling and optimization techniques to compare two rollout plans for ARV-based microbicides in South Africa: a utilitarian plan that minimizes incidence by using geographic targeting, and an egalitarian plan that maximizes geographic equity in access to interventions. We find significant geographic variation in the efficiency of interventions in reducing HIV transmission, and that efficiency increases disproportionately with increasing incidence.

View Article and Find Full Text PDF

A priority of the Global Polio Eradication Initiative (GPEI) 2013-2018 strategic plan is to evaluate the potential impact on polio eradication resulting from expanding one or more Supplementary Immunization Activities (SIAs) to children beyond age five-years in polio endemic countries. It has been hypothesized that such expanded age group (EAG) campaigns could accelerate polio eradication by eliminating immunity gaps in older children that may have resulted from past periods of low vaccination coverage. Using an individual-based mathematical model, we quantified the impact of EAG campaigns in terms of probability of elimination, reduction in polio transmission and age stratified immunity levels.

View Article and Find Full Text PDF

Background: New WHO guidelines recommend initiation of antiretroviral therapy for HIV-positive adults with CD4 counts of 500 cells per μL or less, a higher threshold than was previously recommended. Country decision makers have to decide whether to further expand eligibility for antiretroviral therapy accordingly. We aimed to assess the potential health benefits, costs, and cost-effectiveness of various eligibility criteria for adult antiretroviral therapy and expanded treatment coverage.

View Article and Find Full Text PDF

Background: New WHO guidelines recommend ART initiation for HIV-positive persons with CD4 cell counts ≤500 cells/µL, a higher threshold than was previously recommended. Country decision makers must consider whether to further expand ART eligibility accordingly.

Methods: We used multiple independent mathematical models in four settings-South Africa, Zambia, India, and Vietnam-to evaluate the potential health impact, costs, and cost-effectiveness of different adult ART eligibility criteria under scenarios of current and expanded treatment coverage, with results projected over 20 years.

View Article and Find Full Text PDF

Treating HIV-infected individuals reduces their viral load, consequently increasing their survival time and decreasing their infectivity. It has been proposed that universal testing and treatment (i.e.

View Article and Find Full Text PDF

In South Africa (SA) universal access to treatment for HIV-infected individuals in need has yet to be achieved. Currently ~1 million receive treatment, but an additional 1.6 million are in need.

View Article and Find Full Text PDF

Transmission of HIV strains with drug-resistance mutations (DRMs) causes public health problems in resource-rich countries. We use a stochastic model, with data from viral competition experiments, to analyze the effect of fitness costs (FCs) and genetic bottlenecks on limiting transmission of 10 clinically significant DRMs. Transmission of DRMs with low FCs (∼0.

View Article and Find Full Text PDF

Background: Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1.

View Article and Find Full Text PDF

Viruses contained in live-attenuated virus vaccines (LAVV) can be transmitted between individuals, resulting in secondary or contact vaccinations. This fact has been exploited successfully in the use of the Oral Polio Vaccine (OPV) to better control wild-type polio viruses. In this work we analyze general LAVV vaccination models for infections that confer lifelong immunity.

View Article and Find Full Text PDF

Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.

View Article and Find Full Text PDF

Poliomyelitis vaccination via live Oral Polio Vaccine (OPV) suffers from the inherent problem of reversion: the vaccine may, upon replication in the human gut, mutate back to virulence and transmissibility resulting in circulating vaccine derived polio viruses (cVDPVs). We formulate a general mathematical model to assess the impact of cVDPVs on prospects for polio eradication. We find that for OPV coverage levels below a certain threshold, cVDPVs have a small impact in comparison to the expected endemic level of the disease in the absence of reversion.

View Article and Find Full Text PDF