Publications by authors named "Bradley Falk"

The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation.

View Article and Find Full Text PDF

Excipients are added to biopharmaceutical formulations to enhance protein stability and enable the development of robust formulations with acceptable physicochemical properties, but the mechanism by which they confer stability is not fully understood. Here, we aimed to elucidate the mechanism through direct experimental evidence of the binding affinity of an excipient to a monoclonal antibody (mAb), using saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic method. We ranked a series of excipients with respect to their dissociation constant (K) and nonspecific binding constants (N).

View Article and Find Full Text PDF

Fab Fragment antigen-binding; Fc Fragment crystallizable; HMW High molecular weight; ∆HMW Difference between HMW species at stress temperature and 5°C controls; IgG Immunoglobulin G; mAbs Monoclonal antibodies; MV-V Multivalent V molecule with the format aC-L-aC-L-aD; NMR Nuclear magnetic resonance; scFv Single-chain fragment variable; SEC Size-exclusion chromatography; V Variable domain of Heavy chain of Heavy chain-only antibody.

View Article and Find Full Text PDF

Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization.

View Article and Find Full Text PDF

Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies.

View Article and Find Full Text PDF

Formulations that can increase the dissociation of insulin oligomers into monomers/dimers are important considerations in the development of ultra-rapid-acting insulins with faster onset and shorter duration of actions. Here we present a novel strategy to characterize the oligomeric states of insulin in solution that leverages the ability of nuclear magnetic resonance spectroscopy to assess higher-order structure of proteins in solution. The oligomeric structures and solution behaviors of 2 fast-acting insulins, aspart and lispro, with varying excipient concentrations were studied using 1D and diffusion profiling methods.

View Article and Find Full Text PDF

Thymidylate synthase (TS) is a dimeric enzyme conserved in all life forms that exhibits the allosteric feature of half-the-sites activity. Neither the reason for nor the mechanism of this phenomenon is understood. We used a combined nuclear magnetic resonance (NMR) and molecular dynamics approach to study a stable intermediate preceding hydride transfer, which is the rate-limiting and half-the-sites step.

View Article and Find Full Text PDF

NMR measurements of rotational and translational diffusion are used to characterize the solution behavior of a wide variety of therapeutic proteins and peptides. The timescales of motions sampled in these experiments reveal complicated intrinsic solution behavior such as flexibility, that is central to function, as well as self-interactions, stress-induced conformational changes and other critical attributes that can be discovery and development liabilities. Trends from proton transverse relaxation (R ) and hydrodynamic radius (R ) are correlated and used to identify and differentiate intermolecular from intramolecular interactions.

View Article and Find Full Text PDF

Characterizing changes to structure and behavior is an important aspect of therapeutic protein development. NMR spectroscopy is well suited to study interactions and higher-order structure that could impact biological function and safety. We used NMR diffusion methods to describe the overall behavior of proteins in solution by defining a "diffusion profile" that captures the complexities in diffusion behavior.

View Article and Find Full Text PDF

Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein-ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer.

View Article and Find Full Text PDF

Thymidylate synthase (TSase) is a clinically important enzyme because it catalyzes synthesis of the sole de novo source of deoxy-thymidylate. Without this enzyme, cells die a "thymineless death" since they are starved of a crucial DNA synthesis precursor. As a drug target, TSase is well studied in terms of its structure and reaction mechanism.

View Article and Find Full Text PDF