Publications by authors named "Bradley D Pinno"

Buried wood is an important but understudied component of reclamation soils. We examined the impacts of buried wood amounts and species on the growth of the common reclamation tree species trembling aspen ( In a greenhouse study, aspen seedlings were planted into four soil types, upland derived fine forest floor-mineral mix (fFFMM), coarse forest floor-mineral mix (cFFMM), and lowland derived peat and peat-mineral mix (PMM), that were mixed with either aspen or pine wood shavings at four concentrations (0%, 10%, 20% and 50% of total volume). Height and diameter growth, chlorophyll concentration, and leaf and stem biomass were measured.

View Article and Find Full Text PDF

Land reclamation in the Athabasca oil sands region requires construction of entire soil profiles from materials salvaged during mining. Although much attention has been paid to the limited supply of suitable topsoil materials and their impact on ecosystem recovery, suitable clean subsoil materials are also in limited supply, and their efficient and effective use is an important consideration for land managers in the region. Using data from an oil sands reclamation site in northern Alberta, Canada, we compared soil and foliar nutrients to a wildfire-impacted reference ecosystem with a similarity index.

View Article and Find Full Text PDF

Understory vegetation accounts for the most diverse part of the plant community in boreal forests and plays a critical role in stand dynamics and ecosystem functions. However, the ecological processes that drive understory species diversity are poorly understood and largely unexplored for reconstructed boreal ecosystems. The current study explored the relationships between understory species richness and biotic and abiotic factors in sites reclaimed after oil sands mining in northern Alberta, Canada, three and six growing seasons post-reclamation.

View Article and Find Full Text PDF

The objective of this study was to investigate the impact of different soil covers used to reclaim decommissioned oil sands mining sites on the genetic diversity of aspen and their associated belowground microbiota. Aspen genotyping showed that trees mostly originated from sexual reproduction on sites reclaimed with soil covers made of upland forest floor-mineral mix (FFMM) and lowland peat-mineral mix (PMM). In contrast, most individuals in mature and burned stands sampled as benchmarks for natural disturbances originated from vegetative reproduction.

View Article and Find Full Text PDF