In this study, we introduce a novel field-based method to estimate specific yield (S) in fractured, low-porosity granite aquifers using borehole nuclear magnetic resonance (bNMR). This method requires collecting a bNMR survey immediately following a pump test, which dewaters the near-borehole fractures. The residual water content measured from bNMR is interpreted as "bound" and represents the specific retention (S) while the water drained by the pump is the S.
View Article and Find Full Text PDFBedrock property quantification is critical for predicting the hydrological response of watersheds to climate disturbances. Estimating bedrock hydraulic properties over watershed scales is inherently difficult, particularly in fracture-dominated regions. Our analysis tests the covariability of above- and belowground features on a watershed scale, by linking borehole geophysical data, near-surface geophysics, and remote sensing data.
View Article and Find Full Text PDFIn weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities.
View Article and Find Full Text PDFAs bedrock weathers to regolith - defined here as weathered rock, saprolite, and soil - porosity grows, guides fluid flow, and liberates nutrients from minerals. Though vital to terrestrial life, the processes that transform bedrock into soil are poorly understood, especially in deep regolith, where direct observations are difficult. A 65-m-deep borehole in the Calhoun Critical Zone Observatory, South Carolina, provides unusual access to a complete weathering profile in an Appalachian granitoid.
View Article and Find Full Text PDFIn granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.
View Article and Find Full Text PDF