Publications by authors named "Bradley Butcher"

Developing data-driven solutions that address real-world problems requires understanding of these problems' causes and how their interaction affects the outcome-often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design.

View Article and Find Full Text PDF