Publications by authors named "Bradford McRae"

Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells.

View Article and Find Full Text PDF

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control ( = 31), inactive UC ( = 31), active UC ( = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-β), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids.

View Article and Find Full Text PDF

Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms.

View Article and Find Full Text PDF

Aims: Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function.

View Article and Find Full Text PDF

Intestinal permeability and neutrophil activity are closely linked to inflammatory bowel disease (IBD) pathophysiology. Here we discuss two techniques for assessing permeability and neutrophil activity in mouse IBD models using near infrared (NIR) detection. To address the limitation of visible light readouts-namely high background-IRDye 800CW was used to enable rapid, non-terminal measurements of intestinal permeability.

View Article and Find Full Text PDF

Background: CD40 is a 48 kDa type I transmembrane protein that is constitutively expressed on hematopoietic cells such as dendritic cells, macrophages, and B cells. Engagement of CD40 by CD40L expressed on T cells results in the production of proinflammatory cytokines, induces T helper cell function, and promotes macrophage activation. The involvement of CD40 in chronic immune activation has resulted in CD40 being proposed as a therapeutic target for a range of chronic inflammatory diseases.

View Article and Find Full Text PDF

CD40 is a costimulatory receptor on APCs that is critical for the induction and maintenance of humoral and cell-mediated immunity. Accordingly, CD40 and its ligand, CD40L, have long been considered targets for the treatment of autoimmune diseases. We developed a rat/mouse chimeric anti-mouse CD40 antagonist mAb, 201A3, and evaluated its ability to alleviate murine lupus.

View Article and Find Full Text PDF

A HTS campaign identified compound 1, an excellent hit-like molecule to initiate medicinal chemistry efforts to optimize a dual ROCK1 and ROCK2 inhibitor. Substitution (2-Cl, 2-NH, 2-F, 3-F) of the pyridine hinge binding motif or replacement with pyrimidine afforded compounds with a clean CYP inhibition profile. Cocrystal structures of an early lead compound were obtained in PKA, ROCK1, and ROCK2.

View Article and Find Full Text PDF

Background: Fibrosis in patients with Crohn's disease (CD) results from an imbalance toward excessive fibrous tissue formation driven by fibroblasts. Activation of fibroblasts is linked to the B-cell lymphoma 2 (BCL2) family, which is involved in the induction of apoptosis. We investigated the impact of BCL2 repression on fibrogenesis.

View Article and Find Full Text PDF

Background & Aims: Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We examined the interaction between the anti-TNF Fc-region and Fcγ receptors (FcγR), and whether the absence of the Fc core fucose (which increases binding to FcγRIIIa) increases the efficacy of anti-TNF in mice with colitis.

View Article and Find Full Text PDF

Background And Aims: Anti-tumour necrosis factor [TNF] monoclonal antibodies [infliximab, adalimumab] induce complete mucosal healing in a proportion of patients with Crohn's disease whereas a TNF receptor fusion protein [etanercept] is not effective and the anti-TNF F[ab']2 fragment [certolizumab] shows a very low rate of complete mucosal healing. In contrast, all four TNF-neutralising drugs have demonstrated efficacy in the treatment of rheumatoid arthritis. These observations suggest that factors other than neutralisation of TNF may contribute to clinical outcomes in Crohn's disease.

View Article and Find Full Text PDF

In multiple sclerosis, long-term disability is caused by axonal and neuronal damage. Established therapies target primarily the inflammatory component of the disease, but fail to prevent neurodegeneration. Fingolimod (codenamed FTY720) is an oral sphingosine 1-phosphate (S1P) receptor modulator with promising results in phase II trials in multiple sclerosis patients and is under further development as a novel treatment for multiple sclerosis.

View Article and Find Full Text PDF

The Bcl-2 family of proteins plays a critical role in controlling immune responses by regulating the expansion and contraction of activated lymphocyte clones by apoptosis. ABT-737, which was originally developed for oncology, is a potent inhibitor of Bcl-2, Bcl-x(L), and Bcl-w protein function. There is evidence that Bcl-2-associated dysregulation of lymphocyte apoptosis may contribute to the pathogenesis of autoimmunity and lead to the development of autoimmune diseases.

View Article and Find Full Text PDF

USPIO-enhanced MRI allows non-invasive visualization of mononuclear cell infiltration into CNS lesions in MS and EAE. Herein, we show a distinct spatiotemporal pattern of CNS lesions that reveals the involvement of spino-olivocerebellar pathways in MOG-induced EAE rats using USPIO-enhanced MRI. Specifically, lesions of the inferior olives were observed primarily in the acute phase whereas lesions of cerebellum or spinal cord/brainstem were observed during the relapse phase.

View Article and Find Full Text PDF

The Src family kinases Lck and Fyn play an important role in T cell development and function. We have synthesized a novel small molecule, A-420983, which inhibits Lck and Fyn, as well as other Src family kinases, but has selectivity with respect to non-Src family kinases. A-420983 completely inhibited antigen-stimulated production of IFN-gamma and IL-4 by mouse Th1 and Th2 cells, respectively.

View Article and Find Full Text PDF

Objective: To assess the role of interleukin-18 (IL-18) in the evolution of septic arthritis induced by group B streptococci (GBS) in mice.

Methods: CD1 mice were inoculated intravenously with 8 x 10(6) colony-forming units (CFU) of type IV GBS (strain 1/82), and administered intraperitoneally 1 hour before infection with anti-IL-18 monoclonal antibodies (0.25 mg/mouse).

View Article and Find Full Text PDF