We present the idea of reservoir time series analysis (RTSA), a method by which the state space representation generated by a reservoir computing (RC) model can be used for time series analysis. We discuss the motivation for this with reference to the characteristics of RC and present three ad hoc methods for generating representative features from the reservoir state space. We then develop and implement a hypothesis test to assess the capacity of these features to distinguish signals from systems with varying parameters.
View Article and Find Full Text PDFWe study the task of determining parameters of dynamical systems from their time series using variations of reservoir computing. Averages of reservoir activations yield a static set of random features that allows us to separate different parameter values. We study such random feature models in the time and frequency domain.
View Article and Find Full Text PDF