In a lidar system, replacing moving components with solid-state devices is highly anticipated to make a reliable and compact lidar system, provided that a substantially large beam area with a large angular extent as well as high angular resolution is assured for the lidar transmitter and receiver. A new quasi-solid-state lidar optical architecture employs a transmitter with a two-dimensional MEMS mirror for fine beam steering at a fraction of the degree of the angular resolution and is combined with a digital micromirror device for wide FOV scanning over 37 degree while sustaining a large aperture area of 140 mm squared. In the receiver, a second digital micromirror device is synchronized to the transmitter DMD, which enables a large FOV receiver.
View Article and Find Full Text PDFThe sampling rate and angular resolution of diffraction-based beam steering employing a digital micromirror device (DMD) can be simultaneously enhanced by at least an order of magnitude by synchronizing multiple nanosecond laser sources and pulses during each DMD actuation. A time-of-flight single-chip DMD lidar with three sources measures a range at a 3.34 kHz sampling rate and a 3.
View Article and Find Full Text PDFWe present an optical architecture for a scanning lidar in which a digital micromirror device (DMD) is placed at an intermediate image plane in a receiver to decouple the trade-offs between scan angle, scan speed, and aperture size of the lidar's transmitter and receiver. In the architecture, the transmitter with a galvo mirror and the receiver with a DMD scan the horizontal and vertical fields of view, respectively, to enable an increased field of view of 50°, centimeter transmitter beam diameter, and video frame rate range finding captures. We present our optimized system and discuss the adjustable parameter trade-offs.
View Article and Find Full Text PDFA novel method of beam steering enables a large field of view and reliable single chip light detection and ranging (lidar) by utilizing a mass-produced digital micromirror device (DMD). Using a short pulsed laser, the micromirrors' rotation is frozen in mid-transition, which forms a programmable blazed grating. The blazed grating efficiently redistributes the light to a single diffraction order, among several.
View Article and Find Full Text PDFSubstituted N-alkyldinaphthocarbazoles were synthesized using a key double Diels-Alder reaction. The angular nature of the dinaphthocarbazole system allows for increased stability of the conjugated system relative to linear analogues. The N-alkyldinaphthocarbazoles were characterized by UV-vis absorption and fluorescence spectroscopy as well as cyclic voltammetry.
View Article and Find Full Text PDF