Publications by authors named "Braden M Li"

Next generation on-skin electrodes will require soft, flexible, and gentle materials to provide both high-fidelity sensing and wearer comfort. However, many commercially available on-skin electrodes lack these key properties due to their use of rigid hardware, harsh adhesives, uncomfortable support structures, and poor breathability. To address these challenges, this work presents a new device paradigm by joining biocompatible electrospun spider silk with printable liquid metal to yield an incredibly soft and scalable on-skin electrode that is strain-tolerant, conformable, and gentle on-skin.

View Article and Find Full Text PDF

Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented.

View Article and Find Full Text PDF

Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles.

View Article and Find Full Text PDF

Soft printed electronics exhibit unique structures and flexibilities suited for a plethora of wearable applications. However, forming scalable, reliable multilayered electronic devices with heterogeneous material interfaces on soft substrates, especially on porous and anisotropic structures, is highly challenging. In this study, we demonstrate an all-inkjet-printed textile capacitor using a multilayered structure of bilayer polymer dielectrics and particle-free metal-organic decomposition (MOD) silver electrodes.

View Article and Find Full Text PDF

Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e.

View Article and Find Full Text PDF