Neurons in the brain continuously process the barrage of sensory inputs they receive from the environment. A wide array of experimental work has shown that the collective activity of neural populations encodes and processes this constant bombardment of information. How these collective patterns of activity depend on single-neuron properties is often unclear.
View Article and Find Full Text PDFStatistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past.
View Article and Find Full Text PDFThe space of possible behaviors that complex biological systems may exhibit is unimaginably vast, and these systems often appear to be stochastic, whether due to variable noisy environmental inputs or intrinsically generated chaos. The brain is a prominent example of a biological system with complex behaviors. The number of possible patterns of spikes emitted by a local brain circuit is combinatorially large, although the brain may not make use of all of them.
View Article and Find Full Text PDFPLoS Comput Biol
March 2022
Many organism behaviors are innate or instinctual and have been "hard-coded" through evolution. Current approaches to understanding these behaviors model evolution as an optimization problem in which the traits of organisms are assumed to optimize an objective function representing evolutionary fitness. Here, we use a mechanistic birth-death dynamics approach to study the evolution of innate behavioral strategies in a simulated population of organisms.
View Article and Find Full Text PDFThe mammalian visual system has been the focus of countless experimental and theoretical studies designed to elucidate principles of neural computation and sensory coding. Most theoretical work has focused on networks intended to reflect developing or mature neural circuitry, in both health and disease. Few computational studies have attempted to model changes that occur in neural circuitry as an organism ages non-pathologically.
View Article and Find Full Text PDFA major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties.
View Article and Find Full Text PDFNeural circuits reliably encode and transmit signals despite the presence of noise at multiple stages of processing. The efficient coding hypothesis, a guiding principle in computational neuroscience, suggests that a neuron or population of neurons allocates its limited range of responses as efficiently as possible to best encode inputs while mitigating the effects of noise. Previous work on this question relies on specific assumptions about where noise enters a circuit, limiting the generality of the resulting conclusions.
View Article and Find Full Text PDFUsing a probabilistic approximation of a mean-field mechanistic model of sheared systems, we analytically calculate the statistical properties of large failures under slow shear loading. For general shear F(t), the distribution of waiting times between large system-spanning failures is a generalized exponential distribution, ρ_{T}(t)=λ(F(t))P(F(t))exp[-∫_{0}^{t}dτλ(F(τ))P(F(τ))], where λ(F(t)) is the rate of small event occurrences at stress F(t) and P(F(t)) is the probability that a small event triggers a large failure. We study the behavior of this distribution as a function of fault properties, such as heterogeneity or shear rate.
View Article and Find Full Text PDFHigh-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation.
View Article and Find Full Text PDFSlowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff.
View Article and Find Full Text PDFMitigating the devastating economic and humanitarian impact of large earthquakes requires signals for forecasting seismic events. Daily tide stresses were previously thought to be insufficient for use as such a signal. Recently, however, they have been found to correlate significantly with small earthquakes, just before large earthquakes occur.
View Article and Find Full Text PDFThe tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2011
Hysteretic systems may exhibit a runaway avalanche in which a large fraction of the constituents of the system collectively change state. It would be very valuable to understand the role that interaction strength between constituents plays in the size of such catastrophic runaway avalanches. We use a simple model, the random field Ising model, to study how the size of the runaway avalanche changes as the coupling between spins, J, is tuned.
View Article and Find Full Text PDF