Introduction: Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors such as inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels.
View Article and Find Full Text PDFPrimary intracerebral haemorrhage and lacunar ischaemic stroke are acute manifestations of progressive cerebral microvascular disease. Current paradigms suggest atherosclerosis is a chronic, dynamic, inflammatory condition precipitated in response to endothelial injury from various environmental challenges. Myeloperoxidase plays a central role in initiation and progression of vascular inflammation, but prior studies linking myeloperoxidase with stroke risk have been inconclusive.
View Article and Find Full Text PDFObjective: To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD.
Methods: We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (, , , , , and ) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing.
Genetic studies suggest that hundreds of genes associated with stroke remain unidentified. Exome sequencing proves useful for finding new genes associated with stroke. We aimed to find new genetic risk factors for cardioembolic stroke by analysing exome sequence data using new strategies.
View Article and Find Full Text PDF