Publications by authors named "Brad T Moore"

Background: Measurement of the optic nerve sheath diameter (ONSD) via ultrasonography has been proposed as a non-invasive metric of intracranial pressure that may be employed during in-field patient triage. However, first responders are not typically trained to conduct sonographic exams and/or do not have access to an expensive ultrasound device. Therefore, for successful deployment of ONSD measurement in-field, we believe that first responders must have access to low-cost, portable ultrasound and be assisted by artificial intelligence (AI) systems that can automatically interpret the optic nerve sheath ultrasound scan.

View Article and Find Full Text PDF

To understand the genetic basis of complex traits, it is important to be able to efficiently phenotype many genetically distinct individuals. In the nematode , individuals have been isolated from diverse populations around the globe and whole-genome sequenced. As a result, hundreds of wild strains with known genome sequences can be used for genome-wide association studies (GWAS).

View Article and Find Full Text PDF

/FoxO is required to survive starvation in , but how FoxO promotes starvation resistance is unclear. We show that /FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress.

View Article and Find Full Text PDF

Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development.

View Article and Find Full Text PDF

Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium.

View Article and Find Full Text PDF

The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant.

View Article and Find Full Text PDF

To fully describe gene expression dynamics requires the ability to quantitatively capture expression in individual cells over time. Automated systems for acquiring and analyzing real-time images are needed to obtain unbiased data across many samples and conditions. We developed a microfluidics device, the RootArray, in which 64 Arabidopsis thaliana seedlings can be grown and their roots imaged by confocal microscopy over several days without manual intervention.

View Article and Find Full Text PDF