Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei.
View Article and Find Full Text PDFThe arachnoid barrier, a component of the blood-cerebrospinal fluid barrier (B-CSFB) in the meninges, is composed of epithelial-like, tight-junction-expressing cells. Unlike other central nervous system (CNS) barriers, its' developmental mechanisms and timing are largely unknown. Here, we show that mouse arachnoid barrier cell specification requires the repression of Wnt-β-catenin signaling and that constitutively active β-catenin can prevent its formation.
View Article and Find Full Text PDFThe development of the retinal vasculature is essential to maintain health of the tissue, but the developmental mechanisms are not completely understood. The aim of this study was to investigate the cell-autonomous role of retinoic acid signaling in endothelial cells during retina vascular development. Using a temporal and cell-specific mouse model to disrupt retinoic acid signaling in endothelial cells in the postnatal retina (PdgfbdnRAR403 mutants), we discovered that angiogenesis in the retina is significantly decreased with a reduction in retina vascularization, endothelial tip cell number and filipodia, and endothelial 'crowding' of stalk cells.
View Article and Find Full Text PDFFormation of the vasculature is an essential developmental process, delivering oxygen and nutrients to support cellular processes needed for tissue growth and maturation. Retinoic acid (RA) and its downstream signaling pathway is vital for normal pre- and post-natal development, playing key roles in the specification and formation of many organs and tissues. Here, we review the role of RA in blood and lymph vascular development, beginning with embryonic yolk sac vasculogenesis and remodeling and discussing RA's organ-specific roles in angiogenesis and vessel maturation.
View Article and Find Full Text PDFThe Rho family of small GTPases regulates numerous signaling pathways that control the organization of the cytoskeleton, transcription factor activity, and many aspects of the differentiation of skeletal myoblasts. We now demonstrate that the kinase Mirk (minibrain-related kinase)/dyrk1B is induced by members of the Rho-family in myoblasts and that Mirk is active in skeletal muscle differentiation. Mirk is an arginine-directed serine/threonine kinase which is expressed at elevated levels in skeletal muscle compared with other normal tissues.
View Article and Find Full Text PDF