Publications by authors named "Brad Niles"

TOR is a serine/threonine protein kinase that assembles into distinct TOR Complexes 1 and 2 (TORC1 or TORC2) to regulate cell growth. In mammalian cells, a single mTOR incorporates stably into mTORC1 and mTORC2. By contrast, in , two highly similar Tor1 and Tor2 proteins exist, where Tor1 assembles exclusively into TORC1 and Tor2 assembles preferentially into TORC2.

View Article and Find Full Text PDF

Complex sphingolipids are important components of eukaryotic cell membranes and, together with their biosynthetic precursors, including sphingoid long chain bases and ceramides, have important signaling functions crucial for cell growth and survival. Ceramides are produced at the endoplasmic reticulum (ER) membrane by a multicomponent enzyme complex termed ceramide synthase (CerS). In budding yeast, this complex is composed of two catalytic subunits, Lac1 and Lag1, as well as an essential regulatory subunit, Lip1.

View Article and Find Full Text PDF

The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S.

View Article and Find Full Text PDF

The PH domain-containing proteins Slm1 and Slm2 were originally identified as substrates of the rapamycin-insensitive TOR complex 2 (TORC2) and as mediators of signaling by the lipid second messenger phosphatidyl-inositol-4,5-bisphosphate (PI4,5P2) in budding yeast S. cerevisiae. More recently, these proteins have been identified as critical effectors that facilitate phosphorylation and activation of the AGC kinases Ypk1 and Ypk2 by TORC2.

View Article and Find Full Text PDF

The target of rapamycin (TOR) is a critical regulator of growth, survival, and energy metabolism. The allosteric TORC1 inhibitor rapamycin has been used extensively to elucidate the TOR related signal pathway but is limited by its inability to inhibit TORC2. We used an unbiased cell proliferation assay of a kinase inhibitor library to discover QL-IX-55 as a potent inhibitor of S.

View Article and Find Full Text PDF

The yeast AGC kinase orthologs Ypk1 and Ypk2 control several important cellular processes, including actin polarization, endocytosis, and sphingolipid metabolism. Activation of Ypk1/2 requires phosphorylation by kinases localized at the plasma membrane (PM), including the 3-phosphoinositide-dependent kinase 1 orthologs Pkh1/Pkh2 and the target of rapamycin complex 2 (TORC2). Unlike their mammalian counterparts SGK and Akt, Ypk1 and Ypk2 lack an identifiable lipid-targeting motif; therefore, how these proteins are recruited to the PM has remained elusive.

View Article and Find Full Text PDF

The insulin-like growth factor (IGF) axis, a key regulator of embryonic growth and development, is exquisitely sensitive to the nutrient status of the animal. In addition to macronutrient deficiencies, zinc deficiency can impact the IGF axis. Gestational zinc deficiency is teratogenic, resulting in intrauterine growth retardation and structural abnormalities.

View Article and Find Full Text PDF

One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media.

View Article and Find Full Text PDF

Zinc deficiency is characterized by an attenuation of growth factor signaling pathways and an amplification of p53 pathways. This outcome is facilitated by hypo-phosphorylation of AKT and ERK secondary to zinc deficiency, which are permissive events to the activation of the intrinsic cell death pathway. Low zinc concentrations provide an environment that is also conducive to the production of reactive oxygen/reactive nitrogen species (ROS/RNS) and caspase activation.

View Article and Find Full Text PDF

Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms.

View Article and Find Full Text PDF