Publications by authors named "Brad L Reuhs"

Previous work in our laboratory showed that alkali-solubilized corn arabinoxylan (CAX) has a slow initial, but later complete, in vitro human fecal fermentation. CAX and a moderately high molecular weight hydrolysate (CH) were propiogenic, and produced low levels of butyrate. Here, we show that oxalic acid-generated hydrolysates from CAX, which include a large xylooligosaccharide, and free arabinose fractions, increased short chain fatty acid (SCFA) production, which included relatively high levels of both propionate and butyrate, an unusual SCFA combination.

View Article and Find Full Text PDF

Electrostatic interactions between α-lactalbumin (α-lac) and carboxymethyldextran (CMD) in acidic solutions lead to phase-separated complexes. By adding a non-ionic poly(ethylene glycol) (PEG) chain onto the reducing end of CMD, forming carboxymethyl-dextran-block-poly(ethylene glycol) (CMD-b-PEG), the PEG block was hypothesized to reduce interactions with α-lac and promote formation of a micelle-like complex structure. Formation of complexes between α-lac and CMD-b-PEG or α-lac and CMD was determined following acidification by light scattering and electrophoretic mobility.

View Article and Find Full Text PDF

Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%.

View Article and Find Full Text PDF

Eurotium species often dominate the fungal population in stored grain and are responsible for spoilage. In this study we tested the usefulness of glass fiber disks to aid the analysis of growth, polyol content and gene expression in E. rubrum in response to various water activities.

View Article and Find Full Text PDF