Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network-HistoXGAN-capable of reconstructing representative histology using feature vectors produced by common feature extractors.
View Article and Find Full Text PDFArtificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of novel molecular features. These approaches distill cancer histologic images into high-level features which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network - HistoXGAN - capable of reconstructing representative histology using feature vectors produced by common feature extractors.
View Article and Find Full Text PDF