Publications by authors named "Brad Erisman"

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants).

View Article and Find Full Text PDF

The vulnerability of a fish stock to becoming overfished is dependent upon biological traits that influence productivity and external factors that determine susceptibility or exposure to fishing effort. While a suite of life history traits are traditionally incorporated into management efforts due to their direct association with vulnerability to overfishing, spawning behavioral traits are seldom considered. We synthesized the existing biological and fisheries information of 28 fish stocks in the U.

View Article and Find Full Text PDF

The reproductive and acoustic behaviours of Gulf grouper Mycteroperca jordani were studied at a spawning aggregation site in the southern Gulf of California, México. In May 2015-2017, divers located and surveyed a spawning aggregation site within Cabo Pulmo National Park. Adult M.

View Article and Find Full Text PDF

Courtship and spawning behaviors of coral reef fishes are very complex, and sufficient sampling effort and proper methods are required to draw informed conclusions on their mating systems that are grounded in contemporary theories of mate choice and sexual selection. We reviewed the recent study by Karkarey et al. (BMC Ecol 17:10, 2017) on the spawning behavior of Squaretail coralgrouper (Plectropomus areolatus) from India and found no evidence to support their findings of alternative reproductive tactics, unique school-spawning involving a single male with multiple females, or inverse size-assortment.

View Article and Find Full Text PDF

Spatial and temporal patterns of spawning activity are important measures of resilience in fishes that directly link environmental disturbances with reproductive success. We acoustically monitored spawning in spotted seatrout () from April through September 2017 at 15 sites near Port Aransas, Texas, which coincided with the landfall of a category 4 hurricane (Harvey) on 25 August. Spawning sounds were recorded every day of the study across all sites and were also confirmed during the hurricane at two sites located within the eye of the storm.

View Article and Find Full Text PDF

Estimating the growth of fishes is critical to understanding their life history and conducting fisheries assessments. It is imperative to sufficiently sample each size and age class of fishes to construct models that accurately reflect biological growth patterns, but this may be a challenging endeavor for highly-exploited species in which older fish are rare. Here, we use the Gulf Corvina (), a vulnerable marine fish that has been persistently overfished for two decades, as a model species to compare the performance of several growth models.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Group choruses of marine animals can produce extraordinarily loud sounds that markedly elevate levels of the ambient soundscape. We investigated sound production in the Gulf corvina (), a soniferous marine fish with a unique reproductive behaviour threatened by overfishing, to compare with sounds produced by other marine animals. We coupled echosounder and hydrophone surveys to estimate the magnitude of the aggregation and sounds produced during spawning.

View Article and Find Full Text PDF

Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs.

View Article and Find Full Text PDF

To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population.

View Article and Find Full Text PDF

Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory.

View Article and Find Full Text PDF

Understanding patterns of larval dispersal is key in determining whether no-take marine reserves are self-sustaining, what will be protected inside reserves and where the benefits of reserves will be observed. We followed a multidisciplinary approach that merged detailed descriptions of fishing zones and spawning time at 17 sites distributed in the Midriff Island region of the Gulf of California with a biophysical oceanographic model that simulated larval transport at Pelagic Larval Duration (PLD) 14, 21 and 28 days for the most common and targeted predatory reef fish, (leopard grouper Mycteroperca rosacea). We tested the hypothesis that source-sink larval metapopulation dynamics describing the direction and frequency of larval dispersal according to an oceanographic model can help to explain empirical genetic data.

View Article and Find Full Text PDF

Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation.

View Article and Find Full Text PDF

The Loreto Bay National Park (LBNP) is a large, multi-use marine protected area in the Gulf of California, Mexico, where several types of small-scale commercial and recreational fishing are allowed, but where less than 1% of the park is totally protected from fishing. The LBNP was created in 1996; its management plan was completed in 2000, but it was not effectively implemented and enforced until 2003. Between 1998 and 2010, we monitored reef fish populations annually at several reefs inside and outside the LBNP to measure the effects of the park on fish assemblages.

View Article and Find Full Text PDF

We engaged in cooperative research with fishers and stakeholders to characterize the fine-scale, spatio-temporal characteristics of spawning behavior in an aggregating marine fish (Cynoscion othonopterus: Sciaenidae) and coincident activities of its commercial fishery in the Upper Gulf of California. Approximately 1.5-1.

View Article and Find Full Text PDF

No-take marine reserves are effective management tools used to restore fish biomass and community structure in areas depleted by overfishing. Cabo Pulmo National Park (CPNP) was created in 1995 and is the only well enforced no-take area in the Gulf of California, Mexico, mostly because of widespread support from the local community. In 1999, four years after the establishment of the reserve, there were no significant differences in fish biomass between CPNP (0.

View Article and Find Full Text PDF

The size-advantage model asserts that mating behavior influences the incidence and direction of sex change in animals. Selection for protogyny (female to male sex change) occurs in mating systems in which large males monopolize and pair spawn with females; however, gonochorism (no sex change) is favored when adults spawn in groups and sperm competition is present. Despite widespread empirical and theoretical support for the model, these predictions have not been tested within a phylogenetic context.

View Article and Find Full Text PDF