Nanomaterials are increasingly used in polymer composites to enhance their properties, such as mechanical performance and durability, increased electrical conductivity, and improved optical clarity. Here results are presented of a study simulating effects of weathering on degradation of a nanosilica-low-density polyethylene (LDPE) composite. Release of nanosilica from LDPE composites is a potential source of toxic SiO.
View Article and Find Full Text PDFThere is an increasing volume of nano-enabled materials in the market. Once composites containing nano-additives are disposed of, weathering could deteriorate their structures, releasing nanoparticles and risking exposure of humans and aquatic organisms. Composite degradation due to environmental aging continues, including structural deterioration resulting in cracking, fragmentation, and release of microplastics and nano-additives to the environment.
View Article and Find Full Text PDFAlthough next-generation per- and polyfluorinated substances (PFAS) were designed and implemented as safer and environmentally degradable alternatives to "forever" legacy PFAS, there is little evidence to support the actual transformation of these compounds and less evidence of the safety of transformed products in the environment. Multiple congeners of one such PFAS alternative, the chloro-perfluoropolyether carboxylates (Cl-PFPECAs), have been found in New Jersey soils surrounding a manufacturing facility. These compounds are ideal candidates for investigating environmental transformation due to the existence of potential reaction centers including a chlorinated carbon and ether linkages.
View Article and Find Full Text PDFPrevious studies have reported increased aquatic toxicity of UV-degraded nitroguanidine (NQ), but many details underlying the dynamics of NQ degradation and toxicity remain unknown. These data gaps represent critical barriers to assessing the environmental relevance of laboratory-generated UV-degradation results and extrapolation to environmental risk. In the present study, the toxicity of NQ increased with increasing proportional degradation of the parent compound.
View Article and Find Full Text PDFOver the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2022
The U.S. EPA frequently uses avian or fish toxicity data to set protective standards for amphibians in ecological risk assessments.
View Article and Find Full Text PDFIn recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community.
View Article and Find Full Text PDFFecal indicator organisms (FIOs), such as Escherichia coli and enterococci, are often used as surrogates of contamination in the context of beach management; however, bacteriophages may be more reliable indicators than FIO due to their similarity to viral pathogens in terms of size and persistence in the environment. In the past, mechanistic modeling of environmental contamination has focused on FIOs, with virus and bacteriophage modeling efforts remaining limited. In this paper, we describe the development and application of a fate and transport model of somatic and F-specific coliphages for the Washington Park beach in Lake Michigan, which is affected by riverine outputs from the nearby Trail Creek.
View Article and Find Full Text PDFThe industrial use and widespread application of carbon-based nanomaterials have caused a rapid increase in their production over the last decades. However, toxicity of these materials is not fully known and is still being investigated for potential human and ecological health risks. Detecting carbon-based nanomaterials in the environment using current analytical methods is problematic, making environmental fate and transport modeling a practical way to estimate environmental concentrations and assess potential ecological risks.
View Article and Find Full Text PDFThe production of graphene-family nanomaterials (GFNs) has increased appreciably in recent years. Graphene oxide (GO) has been found to be the most toxic nanomaterial among GFNs and, to our knowledge, no studies have been conducted to model its fate and transport in the environment. Lab studies show that GO undergoes phototransformation in surface waters under sunlight radiation resulting in formation of photoreduced GO (rGO).
View Article and Find Full Text PDFColiphages can indicate contamination of recreational waters and previous studies show that sunlight is important in altering densities of coliphages, other indicator microorganisms, and pathogens in aquatic environments. Here, we report on laboratory studies of light-induced inactivation of two coliphage groups-male-specific (F+) and somatic coliphage-under various conditions in phosphate-buffered water (PBW). Strains isolated from wastewater treatment facilities and laboratory strains (MS2 and phiX174 coliphages) were evaluated.
View Article and Find Full Text PDFThere is a growing interest for the use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect Escherichia coli and are considered as potential surrogates to infer the likely presence of enteric viral pathogens. We report the use of a dead-end hollow fiber ultrafiltration single agar layer method to enumerate F+ and somatic coliphage from surface waters collected from three Great Lake areas.
View Article and Find Full Text PDFA major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses.
View Article and Find Full Text PDF