Background/purpose: The combined contributions of oncogenes and tumor suppressor genes toward carcinogenesis remain poorly understood. Elucidation of cancer gene cooperativity can provide new insights leading to more effective use of therapies.
Experimental Design/methods: We used somatic cell genome editing to introduce singly and in combination PIK3CA mutations (E545K or H1047R) with TP53 alterations (R248W or knockout), to assess any enhanced cancerous phenotypes.
Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
The tumor protein 53 (TP53) tumor suppressor gene is the most frequently somatically altered gene in human cancers. Here we show expression of N-Myc down-regulated gene 1 (NDRG1) is induced by p53 during physiologic low proliferative states, and mediates centrosome homeostasis, thus maintaining genome stability. When placed in physiologic low-proliferating conditions, human TP53 null cells fail to increase expression of NDRG1 compared with isogenic wild-type controls and TP53 R248W knockin cells.
View Article and Find Full Text PDFPurpose: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer.
View Article and Find Full Text PDFClinical genetic testing of BRCA1 and BRCA2 is commonly performed to identify specific individuals at risk for breast and ovarian cancers who may benefit from prophylactic therapeutic interventions. Unfortunately, it is evident that deleterious BRCA1 alleles demonstrate variable penetrance and that many BRCA1 variants of unknown significance (VUS) exist. In order to further refine hereditary risks that may be associated with specific BRCA1 alleles, we performed gene targeting to establish an isogenic panel of immortalized human breast epithelial cells harboring eight clinically relevant BRCA1 alleles.
View Article and Find Full Text PDFObjectives: Circulating plasma DNA is being increasingly used for biomedical and clinical research as a substrate for genetic testing. However, cell lysis can occur hours after venipuncture when using standard tubes for blood collection, leading to an increase in contaminating cellular DNA that may hinder analysis of circulating plasma DNA. Cell stabilization agents can prevent cellular lysis for several days, reducing the need for immediate plasma preparation after venipuncture, thereby facilitating the ease of blood collection and sample preparation for clinical research.
View Article and Find Full Text PDFTamoxifen is effective for treating estrogen receptor-alpha (ER) positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. Here we describe a previously unidentified gene, MACROD2 that confers tamoxifen resistance and estrogen independent growth.
View Article and Find Full Text PDFLoss-of-heterozygosity (LOH) analysis of archival tumor tissue can aid in determining the clinical significance of BRCA variants. Here we describe an approach for assessing LOH in formalin-fixed, paraffin-embedded (FFPE) tissues using variant-specific probes and droplet digital polymerase chain reaction (ddPCR). We evaluated LOH in 2 related breast cancer patients harboring a rare missense BRCA2 variant of unknown clinical significance (c.
View Article and Find Full Text PDFFemale eutherian mammals use X chromosome inactivation (XCI) to epigenetically regulate gene expression from ∼4% of the genome. To quantitatively map the topography of XCI for defined cell types at single cell resolution, we have generated female mice that carry X-linked, Cre-activated, and nuclear-localized fluorescent reporters--GFP on one X chromosome and tdTomato on the other. Using these reporters in combination with different Cre drivers, we have defined the topographies of XCI mosaicism for multiple CNS cell types and of retinal vascular dysfunction in a model of Norrie disease.
View Article and Find Full Text PDFL1 retrotransposons comprise 17% of the human genome and are its only autonomous mobile elements. Although L1-induced insertional mutagenesis causes Mendelian disease, their mutagenic load in cancer has been elusive. Using L1-targeted resequencing of 16 colorectal tumor and matched normal DNAs, we found that certain cancers were excessively mutagenized by human-specific L1s, while no verifiable insertions were present in normal tissues.
View Article and Find Full Text PDF