Publications by authors named "Brach Poston"

Transcranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability.

View Article and Find Full Text PDF

Short-interval intracortical inhibition (SICI) is a common paired-pulse transcranial magnetic stimulation (TMS) measure used to assess primary motor cortex (M1) interneuron activity in healthy populations and in neurological disorders. Many of the parameters of TMS stimulation to most accurately measure SICI have been determined. However, one TMS parameter that has not been investigated is the time between SICI trials (termed inter-trial interval; ITI).

View Article and Find Full Text PDF
Article Synopsis
  • tDCS applied to the dominant primary motor cortex (M1) increases its excitability and motor performance, but its effect on the non-dominant contralateral M1 was not previously quantified.
  • This study used a double-blind, randomized design with 18 participants to assess the impact of tDCS on the excitability of the non-dominant M1, employing transcranial magnetic stimulation (TMS) to measure motor evoked potentials (MEP) at various time points.
  • Results showed that tDCS did not significantly affect the excitability of the contralateral M1 during or right after the stimulation, suggesting that the typical parameters for tDCS may not modulate this area.
View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game.

View Article and Find Full Text PDF

Intracortical facilitation (ICF) is a paired-pulse transcranial magnetic stimulation (TMS) measurement used to quantify interneuron activity in the primary motor cortex (M1) in healthy populations and motor disorders. Due to the prevalence of the technique, most of the stimulation parameters to optimize ICF quantification have been established. However, the underappreciated methodological issue of the time between ICF trials (inter-trial interval; ITI) has been unstandardized, and different ITIs have never been compared in a paired-pulse TMS study.

View Article and Find Full Text PDF

Cerebellar transcranial direct current stimulation (tDCS) enhances motor skill and learning in relatively simple motor tasks, but it is unclear if c-tDCS can improve motor performance in complex motor tasks. The purpose of this study was to determine the influence of c-tDCS applied over multiple days on motor learning in a complex overhand throwing task. In a double-blind, randomized, between-subjects, SHAM-controlled, experimental design, 30 young adults were assigned to either a c-tDCS or a SHAM group.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to numerous impairments in motor function that compromise the ability to perform activities of daily living. Practical and effective adjunct therapies are needed to complement current treatment approaches in PD. Transcranial direct current stimulation applied to the cerebellum (c-tDCS) can increase motor skill in young and older adults.

View Article and Find Full Text PDF

Previous research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design.

View Article and Find Full Text PDF

Background: Cognitive-motor interference (CMI) is a common deficit in Alzheimer's (AD) disease and Parkinson's disease (PD) and may have utility in identification of prodromal neurodegeneration. There is lack of consensus regarding measurement of CMI resulting from dual task paradigms.

Research Question: How are individuals with AD, PD, and prodromal neurodegeneration impacted by CMI as measured by dual-task (DT) performance?

Methods: A systematic literature search was performed in six datasets using the PRISMA guidelines.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by a distinct pattern of cortical thinning and resultant changes in cognition and function. These result in prominent deficits in cognitive-motor automaticity. The relationship between AD-related cortical thinning and decreased automaticity is not well-understood.

View Article and Find Full Text PDF

Motor skill learning can cause structural and functional changes in the primary motor cortex (M1) leading to cortical plasticity that can be associated with the performance change during the motor skill that is practiced. Similarly, anodal transcranial direct current stimulation (a-tDCS) has been shown to facilitate and enhance plasticity in M1, causing even greater motor skill improvement. By using a fine motor task (O'Connor Tweezer Dexterity Task) in combination with a-tDCS we theorized that a-tDCS could increase the speed of skill acquisition.

View Article and Find Full Text PDF
Article Synopsis
  • tDCS has been shown to enhance motor learning, but limited research exists on its effects in elite-level athletes and complex tasks.
  • The study investigated the impact of tDCS on 10-m air rifle shooting performance in elite Deaflympic athletes, using a randomized, double-blind, SHAM-controlled design.
  • Results indicated that applying tDCS to the DLPFC over several days did not significantly improve shooting performance, suggesting that different stimulation methods or longer application durations may be necessary for better outcomes in elite athletes.
View Article and Find Full Text PDF

A single pulse of high intensity electrical current delivered to the digits of the hand during voluntary contractions produces a period of decreased electromyographic (EMG) activity, known as a cutaneous silent period (CSP) (Caccia and Violini, 1973; Inghilleri et al., 1997; Uncini et al., 1991).

View Article and Find Full Text PDF

Background: Decreased automaticity is common among individuals with neurodegenerative disease and is often assessed using dual-task (DT) paradigms. However, the best methods for assessing performance changes related to DT demands remain inconclusive.

Objective: To investigate the reliability and validity of a novel battery of DT measures (DT Effect-Battery (DTE-B)) encompassing three domains: task-specific interference, task prioritization, and automaticity.

View Article and Find Full Text PDF

Background: Depression prevalence in college students is three to six times higher than US adults. Counseling utilization increased by 30%-40% despite reports of student unwillingness to pursue therapy. Pursuance of alternative options, like exercise or meditation, is rarely reported.

View Article and Find Full Text PDF

In goal-directed movements, effective open-loop control reduces the need for feedback-based corrective submovements. The purpose of this study was to determine the influence of hand preference and aging on submovements during single- and two-joint pointing movements. A total of 12 young and 12 older right-handed participants performed pointing movements that involved either elbow extension or a combination of elbow extension and horizontal shoulder flexion with their right and left arms to a target.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been shown to enhance or block online learning of motor skills, depending on the current direction. However, most research on the use of tDCS has been limited to the study of relatively simple motor tasks. The purpose of the present study was to examine the influence of anodal (a-tDCS) and cathodal (c-tDCS) direct current stimulation on the online learning during a single session of dart throwing.

View Article and Find Full Text PDF

Cerebellar transcranial direct current stimulation (c-tDCS) enhances motor skill acquisition and motor learning in young and old adults. Since the cerebellum is involved in the pathophysiology of Parkinson's disease (PD), c-tDCS may represent an intervention with potential to improve motor learning in PD. The primary purpose was to determine the influence of long-term application of c-tDCS on motor learning in PD.

View Article and Find Full Text PDF

Cortical representations expand during skilled motor learning. We studied a unique model of motor learning with cellular phone texting, where the thumbs are used exclusively to interact with the device and the prominence of use can be seen where 3200 text messages are exchanged a month in the 18-24 age demographic. The purpose of the present study was to examine the motor cortex representation and input-output (IO) recruitment curves of the abductor pollicis brevis (APB) muscle of the thumb and the ADM muscle with transcranial magnetic stimulation (TMS), relative to individuals' texting abilities and short-term texting practice.

View Article and Find Full Text PDF

Transcranial direct current stimulation of the cerebellum (c-tDCS) improves motor performance in young and old adults. Based on the cerebellar involvement in Parkinson's disease (PD), c-tDCS could have potential to improve motor function in PD. The purpose was to determine the effects of c-tDCS on motor performance in PD while participants were on medications.

View Article and Find Full Text PDF

Impairments in visuomotor integration (VMI) may contribute to anomalous development of motor, as well as social-communicative, skills in children with autism spectrum disorder (ASD). However, it is relatively unknown whether VMI impairments are specific to children with ASD versus children with other neurodevelopmental disorders. As such, this study addressed the hypothesis that children with ASD, but not those in other clinical control groups, would show greater deficits in high-VMI dynamic grip-force tracking versus low-VMI static presentation.

View Article and Find Full Text PDF

Depression is a serious but treatable health issue that affects college students at an alarming rate. Improved cardiorespiratory fitness (CRF) decreases depression risk and severity but this relationship has not been fully evaluated in the college student population. Non-exercise estimated CRF (eCRF) could be used to identify students at risk for or suffering from depression.

View Article and Find Full Text PDF

Cerebellar transcranial direct current stimulation (c-tDCS) enhances motor adaptation, skill acquisition, and learning in relatively simple motor tasks. The purpose was to examine the influence of c-tDCS on motor learning in a complex overhand throwing task. Forty-two young adults were randomized to a c-tDCS group or a SHAM group and completed a practice session and a retention session.

View Article and Find Full Text PDF

Transcranial random noise stimulation (tRNS) is a brain stimulation technique that has been shown to increase motor performance in simple motor tasks. The purpose was to determine the influence of tRNS on motor skill acquisition and retention in a complex golf putting task. Thirty-four young adults were randomly assigned to a tRNS group or a SHAM stimulation group.

View Article and Find Full Text PDF