Publications by authors named "Braccini V"

The design of iron-based coated conductors (IBS-CC) with a simplified architecture is possible thanks to the material properties that allow for milder requirements on the template crystalline quality. With respect to the state-of-the-art multilayered layout, it is possible to use a single buffer layer that remains necessary for protection and to promote the oriented growth of the superconducting film. In this work, Fe(Se,Te) films are grown via pulsed laser deposition (PLD) on commercial tapes using a single, chemically deposited, CeO-based buffer layer, and interesting properties are obtained.

View Article and Find Full Text PDF

Iron-based superconductors are under study for their potential for high-field applications due to their excellent superconducting properties such as low structural anisotropy, large upper critical fields and low field dependence of the critical current density. Between them, Fe(Se,Te) is simple to be synthesized and can be fabricated as a coated conductor through laser ablation on simple metallic templates. In order to make all the steps simple and fast, we have applied the spark plasma sintering technique to synthesize bulk Fe(Se,Te) to obtain quite dense polycrystals in a very short time.

View Article and Find Full Text PDF

Discovery of iron-based superconductors paved the way to a competitor of high-temperature superconductors, easier to produce, better performing in high fields, and promising to be less expensive. Critical parameters are investigated by resistivity measurements as a function of temperature, field, and angle (). This work presents a deep analysis of - phase diagram of PLD-processed Fe(Se,Te) superconducting films, thus revealing material and pinning anisotropy at once.

View Article and Find Full Text PDF
Article Synopsis
  • The Covid-19 pandemic prompted nursing homes in France to use digital tools like videoconferencing to maintain social connections between residents and their families.
  • The study investigates how these digital technologies are embraced by individuals in nursing homes, analyzing interviews and observations of residents, their relatives, and staff to identify varying practices and the factors influencing them.
  • Results show that while the intent is to reduce isolation and improve quality of life, the effectiveness and acceptance of these tools vary greatly among residents, influenced by social dynamics and organizational support, sometimes leading to feelings of alienation when using technology.
View Article and Find Full Text PDF

The fabrication of a Fe-based coated conductor (CC) becomes possible when Fe(Se,Te) is grown as an epitaxial film on a metallic oriented substrate. Thanks to the material's low structural anisotropy, less strict requirements on the template microstructure allow for the design of a simplified CC architecture with respect to the REBCO multi-layered layout. This design, though, still requires a buffer layer to promote the oriented growth of the superconducting film and avoid diffusion from the metallic template.

View Article and Find Full Text PDF

The process of developing superconducting materials for large scale applications is mainly oriented to optimize flux pinning and the current carrying capability. A powerful approach to investigate pinning properties is to combine high resolution imaging with transport measurements as a function of the magnetic field orientation, supported by a pinning modelling. We carry out Transmission Electron Microscopy, Electron Energy Loss Spectroscopy and critical current measurements in fields up to 16 T varying the angle between the field and c-axis of Fe(Se,Te) epitaxial thin films deposited on CaF substrates.

View Article and Find Full Text PDF

The role of a layered structure in superconducting pinning properties is still at a debate. The effects of the vortex shape, which can assume for example a staircase form, could influence the interplay with extrinsic pinning coming from the specific defects of the material, thus inducing an effective magnetic field dependence. To enlighten this role, we analysed the angular dependence of flux pinning energy (,) as a function of magnetic field in FeSeTe thin film by considering the field components along the -plane of the crystal structure and the -axis direction.

View Article and Find Full Text PDF

Anisotropy effects on flux pinning and flux flow are strongly effective in cuprate as well as iron-based superconductors due to their intrinsically layered crystallographic structure. However Fe(Se,Te) thin films grown on CaF substrate result less anisotropic with respect to all the other iron based superconductors. We present the first study on the angular dependence of the flux flow instability, which occurs in the flux flow regime as a current driven transition to the normal state at the instability point (I*, V*) in the current-voltage characteristics.

View Article and Find Full Text PDF

We study the current-voltage characteristics of Fe(Se,Te) thin films deposited on CaF substrates in form of nanostrips (width w ~ λ, λ the London penetration length). In view of a possible application of these materials to superconductive electronics and micro-electronics we focus on transport properties in small magnetic field, the one generated by the bias current. From the characteristics taken at different temperatures we derive estimates for the pinning potential U and the pinning potential range δ for the magnetic flux lines (vortices).

View Article and Find Full Text PDF