Publications by authors named "Braakman R"

Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how a certain type of microbe, when exposed to periods of darkness, can develop tolerance through co-cultivation with a heterotrophic microbe.
  • Results show that the dark-tolerant microbes became larger, had less chlorophyll, and shifted from photosynthesis to respiration, while the heterotroph adapted by using more organic acids instead of sugars.
  • The research highlights the enhanced metabolic exchange between the two microbes, indicating a strong coupling that helps them survive in low-light conditions.
View Article and Find Full Text PDF

is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high-light (HL)- or low-light (LL)-adapted groups representing broad phylogenetic grades-each composed of several monophyletic clades. Here, we physiologically characterize four new strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean.

View Article and Find Full Text PDF

The remarkable pace of genomic data generation is rapidly transforming our understanding of life at the micron scale. Yet this data stream also creates challenges for team science. A single microbe can have multiple versions of genome architecture, functional gene annotations, and gene identifiers; additionally, the lack of mechanisms for collating and preserving advances in this knowledge raises barriers to community coalescence around shared datasets.

View Article and Find Full Text PDF

Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium . Ecologically distinct subpopulations (or ecotypes) of are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of subpopulations on their surroundings in the wild.

View Article and Find Full Text PDF

Marine picocyanobacteria and , the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin.

View Article and Find Full Text PDF

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.

View Article and Find Full Text PDF

Iron is the limiting factor for biological production over a large fraction of the surface ocean because free iron is rapidly scavenged or precipitated under aerobic conditions. Standing stocks of dissolved iron are maintained by association with organic molecules (ligands) produced by biological processes. We hypothesize a positive feedback between iron cycling, microbial activity, and ligand abundance: External iron input fuels microbial production, creating organic ligands that support more iron in seawater, leading to further macronutrient consumption until other microbial requirements such as macronutrients or light become limiting, and additional iron no longer increases productivity.

View Article and Find Full Text PDF

To improve the preparedness against exposure to highly pathogenic bacteria and to anticipate the wide variety of bacteria that can cause bloodstream infections (BSIs), a safe, unbiased and highly accurate identification method was developed. Our liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method can identify highly pathogenic bacteria, their near-neighbors and bacteria that are common causes of BSIs directly from positive blood culture flasks. The developed Peptide-Based Microbe Detection Engine (http://proteome2pathogen.

View Article and Find Full Text PDF

Ethylene glycol ethers are a well-known series of solvents and hydraulic fluids derived from the reaction of ethylene oxide and monoalcohols. Use of methanol as the alcohol results in a series of mono, di and triethylene glycol methyl ethers. The first in the series, monoethylene glycol methyl ether (EGME or 2-methoxyethanol) is well characterised and metabolises in vivo to methoxyacetic acid (MAA), a known reproductive toxicant.

View Article and Find Full Text PDF

Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis.

View Article and Find Full Text PDF

Intraspecific trait variability has important consequences for the function and stability of marine ecosystems. Here we examine variation in the ability to use nitrate across hundreds of genomes to better understand the modes of evolution influencing intraspecific allocation of ecologically important functions. Nitrate assimilation genes are absent in basal lineages but occur at an intermediate frequency that is randomly distributed within recently emerged clades.

View Article and Find Full Text PDF

Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild.

View Article and Find Full Text PDF

Aim: Bloodstream infections are a common cause of disease and a fast and accurate identification of the causative agent or agents of bloodstream infections would aid the start of adequate treatment.

Materials & Methods: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics method was developed for the identification of bacterial species directly from blood cultures that were simulated by inoculating blood culture bottles with single or multiple clinically relevant microorganisms.

Results: Using LC-MS/MS, the single species were correctly identified in 100% of the blood cultures, whereas for polymicrobial infections, 78% of both species were correctly identified in blood cultures.

View Article and Find Full Text PDF

Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankter To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase in ' metabolic rate and excretion of organic carbon.

View Article and Find Full Text PDF

Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics-based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein-level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis.

View Article and Find Full Text PDF

Laser-capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated.

View Article and Find Full Text PDF

We recently reported on the development of a 4-protein-based classifier (PDCD4, CGN, G3BP2, and OCIAD1) capable of predicting outcome to tamoxifen treatment in recurrent, estrogen-receptor-positive breast cancer based on high-resolution MS data. A precise and high-throughput assay to measure these proteins in a multiplexed, targeted fashion would be favorable to measure large numbers of patient samples to move these findings toward a clinical setting. By coupling immunoprecipitation to multiple reaction monitoring (MRM) MS and stable isotope dilution, we developed a high-precision assay to measure the 4-protein signature in 38 primary breast cancer whole tissue lysates (WTLs).

View Article and Find Full Text PDF

We here describe two proteomic datasets deposited in ProteomeXchange via PRIDE partner repository [1] with dataset identifiers PXD000484 (defined as "training") and PXD000485 (defined as "test") that have been used for the development of a tamoxifen outcome predictive signature [2]. Both datasets comprised 56 fresh frozen estrogen receptor (ER) positive primary breast tumor specimens derived from patients who received tamoxifen as first line therapy for recurrent disease. Patient groups were defined based on time to progression (TTP) after start of tamoxifen therapy (6 months cutoff): 32 good and 24 poor treatment outcome patients were comprised in the training set, respectively.

View Article and Find Full Text PDF

Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth proteome analyses have enabled identification of clinically useful biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM).

View Article and Find Full Text PDF

Protein-containing organic fractions of acid guanidinium thiocyanate-phenol-chloroform-extracted tissues are an interesting source of proteins as this method is widely used for RNA extraction for gene expression analysis. However, due to difficulties in redissolving pelleted proteins from the organic phase, protein analysis has only been limitedly reported. Current shotgun mass spectrometry-based methods, however, require minute amounts of sample, and methods have been developed that allow SDS to be removed from an extraction buffer prior to protein digestion.

View Article and Find Full Text PDF

Acid guanidinium thiocyanate, phenol, and chloroform extraction (AGPC) is a commonly used procedure to extract RNA from fresh frozen tissues and cell lines. In addition, DNA and proteins can be recovered, which makes AGPC an attractive source for integrative analysis on tissues of which little material is available, such as clinical specimens. Despite this potential, AGPC has only scarcely been used for proteomic analysis, mainly due to difficulties in extracting proteins.

View Article and Find Full Text PDF

Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it.

View Article and Find Full Text PDF