Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation and its anti-inflammatory, antioxidant, probiotic, and antibacterial effects. In this research, the water kefir production was studied in 250 mL jars, as well as in a horizontal rotating tubular bioreactor (HRTB).
View Article and Find Full Text PDFResearch Background: An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol.
Experimental Approach: The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast (30 g/L).
The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom sp.
View Article and Find Full Text PDFIn the present study, water extracts from banana and red beetroot peels were evaluated as a potential source of biologically active compounds for the formulation of edible films. Using spectrophotometric and HPLC-DAD methodologies, banana peel extract was found to be a valuable source of dopamine (156.08 mg L), while red beetroot peel extract was abundant in red-violet pigments betacyanins (90.
View Article and Find Full Text PDFParamylon is a valuable intracellular product of the microalgae , and it can accumulate in cells according to the cultivation conditions. For the sustainable production of paramylon and appropriate cell growth, different bioreactor processes and industrial byproducts can be considered as substrates. In this study, a complex medium with corn steep solid (CSS) was used, and various bioreactor processes (batch, fed batch, semicontinuous and continuous) were performed in order to maximize paramylon production in the microalgae .
View Article and Find Full Text PDFNon-conventional yeasts are increasingly being investigated and used as producers in biotechnological processes which often offer advantages in comparison to traditional and well-established systems. Most biotechnologically interesting non-conventional yeasts belong to the subphylum, including those already in use (, etc.), as well as those that are promising but as yet insufficiently characterized.
View Article and Find Full Text PDFBrewers' spent grains (BSG) are a by-product of the brewing industry that is mainly used as feedstock; otherwise, it has to be disposed according to regulations. Due to the high content of glucose and xylose, after pretreatment and hydrolysis, it can be used as a main carbohydrate source for cultivation of microorganisms for production of biofuels or biochemicals like 2,3-butanediol or lactate. 2,3-Butanediol has applications in the pharmaceutical or chemical industry as a precursor for varnishes and paints or in the food industry as an aroma compound.
View Article and Find Full Text PDFMarine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, sp. S5, D1, sp.
View Article and Find Full Text PDFFood Technol Biotechnol
December 2021
The underutilized biomass and different organic waste streams are nowadays in the focus of research for renewable energy production due to the effusive use of fossil fuels and greenhouse gas emission. In addition, one of the major environmental problems is also a constant increase of the number of organic waste streams. In a lot of countries, sustainable waste management, including waste prevention and reduction, has become a priority as a means to reduce pollution and greenhouse gas emission.
View Article and Find Full Text PDFMicrobial lipids have similar fatty acid composition to plant oils, and therefore, are considered as an alternative feedstock for biodiesel production. Oleaginous yeasts accumulate considerable amounts of lipids intracellularly during growth on low-cost renewable feedstocks such as lignocellulosic biomass. In this study, we cultivated yeast on hydrolysate of alkaline pretreated corn cobs.
View Article and Find Full Text PDFVarious fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species ( DSM 2185, CBS 372.70, CBS 663.
View Article and Find Full Text PDFHigh-quality environmentally-friendly bioplastics can be produced by mixing poly-L-lactate with poly-D-lactate. On an industrial scale, this process simultaneously consumes large amounts of both optically pure lactate stereoisomers. However, because optimal growth conditions of L-lactate producers often differ from those of D-lactate producers, each stereoisomer is produced in a specialised facility, which raises cost and lowers sustainability.
View Article and Find Full Text PDFThis work investigates the methodology of producing a 3D-printed microreactor from the acrylic resin by PolyJet Matrix process. The PolyJet Matrix technology employs different materials or their combinations to generate 3D-printed structures, from small ones to complex geometries, with different material properties. Experimental and numerical methods served for the evaluation of the geometry and production of the microreactor and its hydrodynamic characterization.
View Article and Find Full Text PDFFood Technol Biotechnol
March 2019
Bioethanol production from lignocellulosic hydrolysates requires a producer strain that tolerates both the presence of growth and fermentation inhibitors and high ethanol concentrations. Therefore, we constructed heterozygous intraspecies hybrid diploids of by crossing two natural isolates, YIIc17_E5 and UWOPS87-2421, a good ethanol producer found in wine and a strain from the flower of the cactus resistant to inhibitors found in lignocellulosic hydrolysates, respectively. Hybrids grew faster than parental strains in the absence and in the presence of acetic and levulinic acids and 2-furaldehyde, inhibitors frequently found in lignocellulosic hydrolysates, and the overexpression of gene increased their survival.
View Article and Find Full Text PDFFood Technol Biotechnol
September 2018
Production of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials.
View Article and Find Full Text PDFBiodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel.
View Article and Find Full Text PDFThis review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system.
View Article and Find Full Text PDFBackground: Lytic polysaccharide monooxygenases (LPMO) release a spectrum of cleavage products from their polymeric substrates cellulose, hemicellulose, or chitin. The correct identification and quantitation of these released products is the basis of MS/HPLC-based detection methods for LPMO activity. The duration, effort, and intricate analysis allow only specialized laboratories to measure LPMO activity in day-to-day work.
View Article and Find Full Text PDFThe aim was to determine the mycotoxin transfer rate into beer during a semi-industrial production process and the effect of fungicide treatment in the field on mycotoxins concentrations in beer. To ensure the usual practical agronomical conditions, sample A was treated with fungicide Prosaro® 250, and sample B was infected with Fusarium culmorum spores, in order to obtain infected malt. Malt was produced using standard procedure and beer was produced in a semi-industrial unit.
View Article and Find Full Text PDFFossil fuels are still major energy sources, but the search for renewable energy sources has been encouraged. Bioethanol has been recognized as an alternative to fossil fuels and nowadays it represents more than 90% of the global biofuel production. Bioethanol production from raw sugar beet cossettes as a semi-solid substrate was studied.
View Article and Find Full Text PDFLactobacillus coryniformis subsp. torquens DSM20004(T) is a d-lactate producer, with a portion of the d-lactate higher than 99.9% of total lactic acid produced.
View Article and Find Full Text PDFHeterotrophic cultivation of Euglena gracilis was carried out on synthetic (Hutner medium) and complex cultivation media in order to optimize production of β-1,3-glucan (paramylon). For preparation of complex media, various industrial by-products (e.g.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2013
Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy.
View Article and Find Full Text PDFEnvironmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used.
View Article and Find Full Text PDFIndustrial wastewaters polluted with toxic heavy metals are serious ecological and environmental problem. Therefore, in this study multi-heavy metals (Fe(2+), Cu(2+), Ni(2+) and Zn(2+)) removal process with mixed microbial culture was examined in the horizontal rotating tubular bioreactor (HRTB) by different combinations of process parameters. Hydrodynamic conditions and biomass sorption capacity have main impact on the removal efficiency of heavy metals: Fe(2+) 95.
View Article and Find Full Text PDF