Publications by authors named "Bozheng Wang"

With the rapid development of autonomous and intelligent devices driven by soft actuators, ion soft actuators in flexible intelligent devices have several advantages over other actuators, including their light weight, low voltage drive, large strain, good flexibility, fast response, etc. Traditional ionic polymer metal composites have received a lot of attention over the past decades, but they suffer from poor driving performance and short service lives since the precious metal electrodes are not only expensive, heavy, and labor-intensive, but also prone to cracking with repeated actuation. As excellent candidates for the electrode materials of ionic soft actuators, carbon-based nanomaterials have received a lot of interest because of their plentiful reserves, low cost, and excellent mechanical, electrical, and electrochemical properties.

View Article and Find Full Text PDF

Mitochondria have a crucial role in regulating energy metabolism and their dysfunction has been linked to tumorigenesis. Cancer diagnosis and intervention have a great interest in the development of new agents that target biomolecules within mitochondria. However, monitoring and modulating mitochondria RNA (mtRNA), an essential component in mitochondria, in cells is challenging due to limited functional research and the absence of targeting agents.

View Article and Find Full Text PDF

The presence of antibiotic contaminants in aqueous environment already poses significant risks to ecological sustainability, biodiversity and human public health and safety. Therefore, it is urgent to develop practical water pollution control technologies and new materials. Here, we prepared CuO-Co O co-modified porous boron nitride fibers (P-BNFs) for the adsorption and removal of tetracycline antibiotics (TCs) in aqueous environment.

View Article and Find Full Text PDF

The development of triple-negative breast cancer (TNBC) is highly associated with G-quadruplex (G4); thus, targeting G4 is a potential strategy for TNBC therapy. Because concomitant histone deacetylases (HDAC) inhibition could amplify the impact of G4-targeting compounds, we designed and synthesized two novel series of G4/HDAC dual-targeting compounds by connecting the zinc-binding pharmacophore of HDAC inhibitors to the G4-targeting isaindigotone scaffold (). Among the new compounds, with the potent HDAC inhibitory and G4 stabilizing activity could induce more DNA G4 formation than SAHA and in TNBC cells.

View Article and Find Full Text PDF

In the development of hexagonal boron nitride (-BN)-based polymeric composites with high thermal conductivity, it is always challenging to achieve a dense filling of -BN fillers to form a desired high-density thermal transfer network. Here, a series of boron nitride nanosheets (BNNSs)/epoxy resin (EP) bulk composites filled with ultrahigh BNNSs content (65-95 wt %) is successfully constructed through a well-designed mechanical-balling prereaction combined with a general pressure molding method. By means of this method, the highly filled BNNSs fillers are uniformly dispersed and strongly bonded with EP within the composites.

View Article and Find Full Text PDF