Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development.
View Article and Find Full Text PDFPathogen infection is a dynamic process. Here, we employ single-cell transcriptomics to investigate plant response heterogeneity. By generating an Arabidopsis thaliana leaf atlas encompassing 95,040 cells during infection by a fungal pathogen, Colletotrichum higginsianum, we unveil cell-type-specific gene expression, notably an enrichment of intracellular immune receptors in vasculature cells.
View Article and Find Full Text PDFPathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences.
View Article and Find Full Text PDFTo cause rice blast disease, the filamentous fungus secretes a battery of effector proteins into host plant tissue to facilitate infection. Effector-encoding genes are expressed only during plant infection and show very low expression during other developmental stages. How effector gene expression is regulated in such a precise manner during invasive growth by is not known.
View Article and Find Full Text PDFThe rice blast fungus Magnaporthe oryzae causes a devastating disease that threatens global rice (Oryza sativa) production. Despite intense study, the biology of plant tissue invasion during blast disease remains poorly understood. Here we report a high-resolution transcriptional profiling study of the entire plant-associated development of the blast fungus.
View Article and Find Full Text PDFGibberella stalk rot (GSR) caused by is one of the most devastating diseases in maize; however, the regulatory mechanism of resistance to GSR remains largely unknown. We performed a comparative multi-omics analysis to reveal the early-stage resistance of maize to GSR. We inoculated to the roots of susceptible (Y331) and resistant (Y331-ΔTE) near-isogenic lines containing GSR-resistant gene for multi-omics analysis.
View Article and Find Full Text PDFIn eukaryotes, N -methyladenosine (m A) is abundant on mRNA, and plays key roles in the regulation of RNA function. However, the roles and regulatory mechanisms of m A in phytopathogenic fungi are still largely unknown. Combined with biochemical analysis, MeRIP-seq and RNA-seq methods, as well as biological analysis, we showed that Magnaporthe oryzae MTA1 gene is an orthologue of human METTL4, which is involved in m A modification and plays a critical role in autophagy for fungal infection.
View Article and Find Full Text PDFRice blast is a devastating disease caused by the fungal pathogen Magnaporthe oryzae that threatens rice production around the world. The fungus produces a specialized infection cell, called the appressorium, that enables penetration through the plant cell wall in response to surface signals from the rice leaf. The underlying biology of plant infection, including the regulation of appressorium formation, is not completely understood.
View Article and Find Full Text PDFPlant Biotechnol J
December 2021
Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens. Although PTI-mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-derived flg22.
View Article and Find Full Text PDFThis introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle.
View Article and Find Full Text PDFThe chromatin modulator Set5 plays important regulatory roles in both cell growth and stress responses of Saccharomyces cerevisiae. However, its function in filamentous fungi remains poorly understood. Here, we report the pathogenicity-related gene CgSET5 discovered in a T-DNA insertional mutant M285 of Colletotrichum gloeosporioides.
View Article and Find Full Text PDFMany pathogenic fungi depend on the development of specialized infection structures called appressoria to invade their hosts and cause disease. Impairing the function of fungal infection structures therefore provides a potential means by which diseases could be prevented. In spite of this extraordinary potential, however, relatively few anti-penetrant drugs have been developed to control fungal diseases, of either plants or animals.
View Article and Find Full Text PDFGenetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M.
View Article and Find Full Text PDF