Publications by authors named "Bozena Zgardzinska"

The front cover artwork is provided by Dr habil. Izabella Jastrzebska's group from the University of Białystok, Poland. The image shows a polymeric network with molecular rotors (MR) as crosslinks.

View Article and Find Full Text PDF

In this paper, we report a new generation of polymeric networks as potential functional material based on changes in molecular dynamics in the solid state. The material is obtained by free radical polymerization of a diacrylate derivative bearing a steroid (stator) and a 1,4-diethynyl-phenylene-d fragment (rotator). Polymer research using the PALS technique complements the knowledge about nanostructural changes occurring in the system in the temperature range -115 °C - +190 °C.

View Article and Find Full Text PDF

Various concentrations (8-300 mmol/L) of NaCl, KCl, and NaCl + KCl aqueous solutions were investigated using positron annihilation lifetime spectroscopy (PALS). A strong dependence of the -Ps intensity as a function of the solution concentration was demonstrated. On this basis, the mean positron lifetime and the sum of counts in a selected time interval were proposed as reliable parameters for detecting disturbances in the ion balance of living organisms.

View Article and Find Full Text PDF

Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence of pharmaceuticals in treated conventional wastewater or even in the environment is strictly indicating that present techniques of wastewater treatment are not efficient enough and are not designed to remove such pollutants.

View Article and Find Full Text PDF

The investigated polymeric matrixes consisted of epoxidized linseed oil (ELO), acrylated epoxidized soybean oil (AESO), trimethylolpropane triglycidyl ether (RD1), vanillin dimethacrylate (VDM), triarylsulfonium hexafluorophosphate salts (PI), and 2,2-dimethoxy-2-phenylacetophenone (DMPA). Linseed oil-based (ELO/PI, ELO/10RD1/PI) and soybean oil-based (AESO/VDM, AESO/VDM/DMPA) polymers were obtained by cationic and radical photopolymerization reactions, respectively. In order to improve the cross-linking density of the resulting polymers, 10 mol.

View Article and Find Full Text PDF

A combined study of one of the simplest aromatic hydrocarbons, i.e., methylbenzene (toluene) (TOL), via the annihilation of an ortho-positronium (o-Ps) probe via positron annihilation lifetime spectroscopy (PALS) and the rotation dynamics of nitroxide spin probe 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) using electron spin resonance (ESR) over a wide temperature range, 10-300 K, is reported.

View Article and Find Full Text PDF

In this study, we describe the fabrication of sensitive biosensor for the detection of phenolic substrates using laccase immobilized onto two types of microporous carbon fibers (CFs). The main characteristics of microporous CFs used for preparation of biosensors are given. Two CFs were characterized by different specific surface area, CFA (<1 m·g) and CFB (1448 m·g), but with comparable size of the micropores estimated by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Hypothesis: The negative pressure in liquids under the concave meniscus of nanometer size can be observed experimentally. This allows verification of the predictions of the macroscopic Young-Laplace law, which has so far been performed only on the basis of theoretical calculations. The deviation of the negative pressure from the Young-Laplace law allows to get information about the structure of the porous matrix.

View Article and Find Full Text PDF

A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before.

View Article and Find Full Text PDF