Treatment of eight different 1-deoxy-1-nitroalditols with freshly prepared ferrous hydroxide at ambient temperature provides the corresponding glycamines that were isolated in 81-94% yields as salts with TFA. Under such modified reaction conditions, the retro-Henry reaction of the starting compounds is significantly suppressed due to the amphoteric character of the reducing agent in water. Lower, 58-75% yields were obtained by the classical process with ferrous sulfate in aqueous ammonia and employing an improved purification procedure for the product glycamines by irreversible capture of sulfate ions with barium carbonate.
View Article and Find Full Text PDFSodium methoxide-promoted methanolysis of 7-deoxy-7-nitro-L-glycero-L-galacto-heptitol peracetate rapidly and nearly quantitatively accumulates 7-deoxy-6-O-methyl-7-nitro-L-glycero-L-galacto-heptitol. The prolonged treatment then provides 76% of D-galactofuranosyl nitromethanes and finally results in the equilibrium of 77% of β-D-galactopyranosyl nitromethane and 7-9% of three other tautomeric D-galactosyl nitromethanes. Thermal treatment of 7-deoxy-7-nitro-L-glycero-L-galacto-heptitol in boiling water peaks at a 58% content of D-galactofuranosyl nitromethanes and ends in a similar equilibrium mixture of four D-galactosyl tautomers.
View Article and Find Full Text PDFAcid-catalysed methanolysis of 3,4,5,6-tetra-O-acetyl-1,2-dideoxy-l-arabino-hex-1-enitol proceeds via a cascade set of consecutive reactions resulting in its regiospecific conversion to a mixture of alpha- and beta-C-L-arabinofuranosylmethanal dimethyl acetals and a mixed internal methyl acetal. Structures of the final products of the overall process provide unique evidence that a kinetically controlled, five-membered-ring closure precedes a six-membered-ring closure in reversible systems capable of giving both five-membered and six-membered all-sp3-atom rings. Determination of the reaction intermediate enabled extension of the Nef reaction to C-glycosylnitromethanes.
View Article and Find Full Text PDFA biosensor based on the surface plasmon resonance (SPR) principle was used for kinetic analysis of lectin interactions with different immobilized saccharide structures. A novel affinity ligands beta-D-glycopyranosylmethylamines derived from common D-aldohexoses linked to the carboxymethyl dextran layer of the SPR sensor surface served for interactions with a wide range of lectins. The method of preparation and use of the beta-D-mannopyranosyl glycosylated sensor surface was described.
View Article and Find Full Text PDF