Publications by authors named "Bozena Dziadek"

Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.

View Article and Find Full Text PDF

Because resistant variants of the disease are always emerging, tuberculosis is a global issue that affects economies. New antitubercular medications should be developed, and this can be done by inhibiting druggable targets. Enoyl acyl carrier protein (ACP) reductase (InhA) is a crucial enzyme for the survival of (MTB).

View Article and Find Full Text PDF

The spread of drug-resistant tuberculosis strains has become a significant economic burden globally. To tackle this challenge, there is a need to develop new drugs that target specific mycobacterial enzymes. Among these enzymes, InhA, which is crucial for the survival of , is a key target for drug development.

View Article and Find Full Text PDF

Tuberculosis is a global serious problem that imposes major health, economic and social challenges worldwide. The search for new antitubercular drugs is extremely important which could be achieved via inhibition of different druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA) enzyme is essential for the survival of M.

View Article and Find Full Text PDF

Tuberculosis (TB) is a global issue that poses a significant economic burden as a result of the ongoing emergence of drug-resistant strains. The urgent requirement for the development of novel antitubercular drugs can be addressed by targeting specific enzymes. One such enzyme, Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein (enoyl-ACP) reductase (InhA), plays a crucial role in the survival of the MTB bacterium.

View Article and Find Full Text PDF

In reference to gene annotation, more than half of the tRNA species synthesized by Mycobacterium tuberculosis require the enzymatic addition of the cytosine-cytosine-adenine (CCA) tail, which is indispensable for amino acid charging and tRNA functionality. It makes the mycobacterial CCA-adding enzyme essential for survival of the bacterium and a potential target for novel pipelines in drug discovery avenues. Here, we described the rv3907c gene product, originally annotated as poly(A)polymerase (rv3907c, PcnA) as a functional CCA-adding enzyme (CCA) essential for viability of M.

View Article and Find Full Text PDF

Introduction: In the course of tuberculosis (TB), the level of major acute phase protein, namely serum amyloid A (hSAA-1), increases up to a hundredfold in the pleural fluids of infected individuals. Tubercle bacilli infecting the human host can be opsonized by hSAA-1, which affects bacterial entry into human macrophages and their intracellular multiplication.

Methods: We applied global RNA sequencing to evaluate the functional response of human monocyte-derived macrophages (MDMs), isolated from healthy blood donors, under elevated hSAA-1 conditions and during infection with nonopsonized and hSAA-1-opsonized ().

View Article and Find Full Text PDF

Toxoplasmosis caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. Although it may prove dangerous or even fatal for immunocompromised individuals, immunoprophylaxis for humans is still nonexistent. Thus, the aim of the current work was to assess the ability of two immunogenic recombinant chimeric T.

View Article and Find Full Text PDF

Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 "orphan" response regulator in the physiology of and its orthologue Msmeg_2064 in . We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation.

View Article and Find Full Text PDF

Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan (), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds.

View Article and Find Full Text PDF

() is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of have led to the re-emergence of tuberculosis as a global pandemic.

View Article and Find Full Text PDF

As a very successful pathogen with outstanding adaptive properties, () has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay.

View Article and Find Full Text PDF

Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as , are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of , a free-living and nonpathogenic mycobacterium.

View Article and Find Full Text PDF

Toxoplasmosis, one of the most common parasitoses worldwide, is potentially dangerous for individuals with a weakened immune system, but specific immunoprophylaxis intended for humans is still lacking. Thus, efforts have been made to create an efficient universal vaccine for both animals and humans to overcome the shortcomings of currently used treatment methods and protect all hosts against toxoplasmosis. The current work represents a relatively new approach to vaccine development based on recombinant chimeric antigens.

View Article and Find Full Text PDF

We have recently found that selected -disaccharides possess bactericidal effects against but not against or S. Here, we selected spontaneous mutants displaying resistance against the investigated -glycoside. According to next-generation sequencing, four of six analyzed mutants which were resistant to high concentrations of the tested chemical carried nonsynonymous mutations in the gene encoding the PPE51 protein.

View Article and Find Full Text PDF

is an important zoonotic protozoan that infects a wide variety of vertebrates as intermediate hosts. For this reason, the diagnosis of this disease is very important and requires continuous improvement. One possibility is to use recombinant antigens in serological tests.

View Article and Find Full Text PDF

Toxoplasmosis may pose a serious threat for individuals with weakened or undeveloped immune systems. However, to date, there is no specific immunoprophylaxis for humans. Thus, the aim of this study was to evaluate the immunogenicity of three trivalent-SAG2-GRA1-ROP1 (SGR), SAG1-MIC1-MAG1 (SMM), and GRA1-GRA2-GRA6 (GGG)-and two tetravalent-SAG2-GRA1-ROP1-GRA2 (SGRG) and SAG1-MIC1-MAG1-GRA2 (SMMG)-chimeric proteins, as well as their protective potential against chronic toxoplasmosis in laboratory mice.

View Article and Find Full Text PDF

1-benzo[]imidazole derivatives exhibit antitubercular activity at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular To identify their target, we selected drug-resistant mutants and then used whole-genome sequencing to unravel mutations in the essential gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the alleles carrying the mutations identified in the resistors.

View Article and Find Full Text PDF

This study presents an evaluation of four tetravalent recombinant chimeric proteins containing fragments of the Toxoplasma gondii antigens, SAG2, GRA1, ROP1 and AMA1, as potential replacements of a the soluble, whole-cell tachyzoite lysate (TLA) used in serological assays. Recombinant chimeric proteins (SAG2-GRA1-ROP1-AMA1N, AMA1N-SAG2-GRA1-ROP1, AMA1C-SAG2-GRA1-ROP1, and AMA1-SAG2-GRA1-ROP1) obtained by genetic engineering were tested for their reactivity with specific IgM and IgG antibodies from sera of experimentally infected mice and humans with T. gondii infection using an enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

The aim of this study was to evaluate the immunogenic and immunoprotective activities and to determine the neuroprotective capacity of the tetravalent vaccine containing selected recombinant T. gondii antigens (ROP2 + ROP4 + SAG1 + MAG1) administered with safe adjuvants (MPL and alum) using male and female inbred mice. The tested antigenic combination provided partial protection against brain cyst formation, especially in males (reduction in cyst burden by 72%).

View Article and Find Full Text PDF

Two-component regulatory systems (TCSSs) are key regulatory elements responsible for the adaptation of bacteria to environmental stresses. A classical TCSS is typically comprised of a sensory histidine kinase and a corresponding response regulator. Here, we used homologous recombination to construct a mutant defective in the synthesis of cytosolic histidine kinase PdtaS (Msmeg_1918).

View Article and Find Full Text PDF

Sugars with heteroatoms other than oxygen have attained considerable importance in glycobiology and in drug design since they are often more stable in blood plasma due to their resistance to enzymes, such as glycosidases, phosphorylases and glycosyltransferases. The replacement of oxygen atoms in sugars with sulfur forms thio-sugars, which are potentially useful for the treatment of diabetes and some bacterial and viral infections. Here, we evaluated the antibacterial activity of thio-functionalized carbohydrate derivatives.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is an extremely successful intracellular pathogen that has evolved a broad spectrum of pathogenic mechanisms that enable its manipulation of host defense elements and its survival in the hostile environment inside phagocytes. Cellular influx into the site of mycobacterial entry is mediated by a variety of chemokines, including interleukin-8 (IL-8), and the innate cytokine network is critical for the development of an adaptive immune response and infection control. Using affinity chromatography, liquid chromatography electrospray ionization tandem mass spectrometry and surface plasmon resonance techniques, we identified M.

View Article and Find Full Text PDF

Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T.

View Article and Find Full Text PDF

Interleukin-8 (IL-8) has been implicated in the pathogenesis of several human respiratory diseases, including tuberculosis (TB). Importantly and in direct relevance to the objectives of this report quite a few findings suggest that the presence of IL-8 may be beneficial for the host. IL-8 may aid with mounting an adequate response during infection with Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF