Publications by authors named "Bozek G"

Background: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations.

View Article and Find Full Text PDF

Introduction: The 2018 European Society of Cardiology / European Society of Hypertension guidelines recommended the use of combination therapy, especially in the form of single‑pill combinations (SPCs), for treatment of hypertension.

Objectives: We assessed adherence to these recommendations after their publication and during the COVID‑19 pandemic in Poland.

Patients And Methods: The frequencies of using individual antihypertensive drug classes and their combinations were analyzed for the years 2019, 2020, and 2021 in all patients who filled at least 1 prescription for an antihypertensive drug, using information from a database covering all prescriptions filled in Poland.

View Article and Find Full Text PDF

Hepatic steatosis is a major etiological factor in hepatocellular carcinoma (HCC), but factors causing lipid accumulation leading to HCC are not understood. We identify BNIP3 (a mitochondrial cargo receptor) as an HCC suppressor that mitigates against lipid accumulation to attenuate tumor cell growth. Targeted deletion of decreased tumor latency and increased tumor burden in a mouse model of HCC.

View Article and Find Full Text PDF

Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting and from megabase distances.

View Article and Find Full Text PDF

Mitophagy formed the basis of the original description of autophagy by Christian de Duve when he demonstrated that GCG (glucagon) induced macroautophagic/autophagic turnover of mitochondria in the liver. However, the molecular basis of liver-specific activation of mitophagy by GCG, or its significance for metabolic stress responses in the liver is not understood. Here we show that BNIP3 is required for GCG-induced mitophagy in the liver through interaction with processed LC3B; an interaction that is also necessary to localize LC3B out of the nucleus to cytosolic mitophagosomes in response to nutrient deprivation.

View Article and Find Full Text PDF

Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression.

View Article and Find Full Text PDF

Ssm1b (Strain-specific modifier of DNA methylation 1b) is a Krüppel-associated box (KRAB) zinc finger gene that promotes CpG methylation in the mouse transgene HRD (Heavy chain enhancer, rearrangement by deletion). We report here that Ssm1b expression and concomitant HRD methylation are also present in the male and female germ cells of adult mice. Ssm1b is expressed in both diploid (2N) and haploid (1N) oocytes, as well as in 1N spermatids and spermatozoa, but not in 2N spermatogonia.

View Article and Find Full Text PDF

The strain-specific modifier Ssm1 is responsible for the strain-dependent methylation of particular E. coli gpt-containing transgenic sequences. Here, we identify Ssm1 as the KRAB-zinc finger (ZF) gene 2610305D13Rik located on distal chromosome 4.

View Article and Find Full Text PDF

Mice with a deletion of the p53 gene have normal antibody titers against sheep red blood cells and normal switching to all Ig isotypes. In older mice (11 and 16 weeks old) the somatic hypermutation (SHM) frequencies are progressively reduced. In young mice (8 weeks old) with p53 deletion, the SHM frequencies are normal.

View Article and Find Full Text PDF

Activation-induced DNA cytidine deaminase (AID) is required for somatic hypermutation (SHM) and efficient class switch recombination (CSR) of immunoglobulin (Ig) genes. We created AID-transgenic mice that express AID ubiquitously under the control of a beta-actin promoter. When crossed with AID-/- mice, the AID-transgenic,AID-/- mice carried out SHM and CSR, showing that the AID transgenes were functional.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytosine deaminase (AID). The uracil, and potentially neighboring bases, are processed by error-prone base excision repair and mismatch repair. Deficiencies in Ung, Msh2, or Msh6 affect SHM and CSR.

View Article and Find Full Text PDF

The presence of valine-154 instead of glycine in the constant region of lambda1 causes a severe lambda1 B cell defect in SJL and lambda1-valine knock-in mice with a compensatory increase in lambda2,3 B cells. The defect is due to low signaling by the lambda1-valine BCR. lambda1-Valine B cells deficient in the SHP-1 phosphatase survive better than lambda2,3 B cells in these mice, or lambda1 B cells in lambda1 wildtype mice.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) is restricted to VDJ regions and their adjacent flanks in immunoglobulin (Ig) genes, whereas constant regions are spared. Mutations occur after about 100 nucleotides downstream of the promoter and extend to 1-2 kb. We have asked why the very 5' and most of the 3' region of Ig genes are unmutated.

View Article and Find Full Text PDF

The gene FUS (also known as TLS (for translocated in liposarcoma) and hnRNP P2) is translocated with the gene encoding the transcription factor ERG-1 in human myeloid leukaemias. Although the functions of wild-type FUS are unknown, the protein contains an RNA-recognition motif and is a component of nuclear riboprotein complexes. FUS resembles a transcription factor in that it binds DNA, contributes a transcriptional activation domain to the FUS-ERG oncoprotein and interacts with several transcription factors in vitro.

View Article and Find Full Text PDF

Mice carrying a gamma2b transgene have been shown previously to be deficient in B cell development. In particular, a developmental block exists at the pre-B cell stage. The few B cells that develop all express endogenous micro heavy chains.

View Article and Find Full Text PDF

During B and T lymphocyte development, immunoglobulin and T cell receptor genes are assembled from the germline V, (D) and J gene segments (Lewis, S.M., 1994.

View Article and Find Full Text PDF

Somatic hypermutation of Ig genes is probably dependent on transcription of the target gene via a mutator factor associated with the RNA polymerase (Storb, U., E.L.

View Article and Find Full Text PDF

We have identified Nix, a homolog of the E1B 19K/Bcl-2 binding and pro-apoptotic protein Nip3. Human and murine Nix have a 56 and 53% amino acid identity to human and murine Nip3, respectively. The carboxyl terminus of Nix, including a transmembrane domain, is highly homologous to Nip3 but it bears a longer and distinct asparagine/proline-rich N terminus.

View Article and Find Full Text PDF

Silencing of chromosomal domains has been described in diverse systems such as position effect variegation in insects, silencing near yeast telomeres, and mammalian X chromosome inactivation. In mammals, silencing is associated with methylation at CpG dinucleotides, but little is known about how methylation patterns are established or altered during development. We previously described a strain-specific modifier locus, Ssm1, that controls the methylation of a complex transgene.

View Article and Find Full Text PDF

Immunoglobulin (Ig) genes expressed in mature B lymphocytes can undergo somatic hypermutation upon cell interaction with antigen and T cells. The mutation mechanism had previously been shown to depend upon transcription initiation, suggesting that a mutator factor was loaded on an RNA polymerase initiating at the promoter and causing mutations during elongation (Peters, A., and U.

View Article and Find Full Text PDF

V(D)J recombination proceeds in two stages. Precise cleavage at the border of the conserved recombination signal sequences (RSSs) and the coding ends results in flush double-stranded signal ends and coding ends terminating in hairpins. In the second stage, the signal and coding ends are processed into signal and coding joints.

View Article and Find Full Text PDF

Transgenic mice that carry a lambda 2 transgene under the control of the V lambda 2 promoter and the E lambda 2-4 enhancer (lambda 2E lambda mice) are described. A high proportion of B cells in the spleen and the bone marrow express the lambda transgene on the cell membrane. lambda 2 protein is synthesized by all lambda 2E lambda-derived spleen B-cell hybridomas that have retained the transgene, suggesting that all B cells have the ability to express lambda genes.

View Article and Find Full Text PDF