Background And Objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.
Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy.
Venous thromboembolism (VTE) has been occurring frequently in human society. There is an urgent need to study the influence of several factors on thrombolytic therapy, such as the effects of vascular pressure levels (VPL) and the drug injection time (DIT). Considering blood as a non-Newtonian fluid, valve as a hyperelastic material, and thrombus as a porous medium, a new numerical simulation model of biofluid mechanics incorporating fluid-solid coupling phenomena and biochemical substance reactions is established based on the N-S equations and the convection-diffusion reaction equations.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
October 2023
Thrombus is an extremely dangerous factor in the human body that can block the blood vessel. Once thrombosis happens in venous of lower limbs, local blood flow is impeded. This leads to venous thromboembolism (VTE) and even pulmonary embolism.
View Article and Find Full Text PDF