Background: Brain-computer interface (BCI) has become an effective human-machine interactive way. However, the performance of the traditional BCI system needs to be further improved, such as flexibility, robustness, and accuracy. We aim to develop an autonomous hybrid BCI system combined with eye-tracking for the control tasks in the virtual environment.
View Article and Find Full Text PDF. Single-trial electroencephalography (EEG) classification is of great importance in the rapid serial visual presentation (RSVP) task. Convolutional neural networks (CNNs), as one of the mainstream deep learning methods, have been proven to be effective in extracting RSVP EEG features.
View Article and Find Full Text PDF