Publications by authors named "Boys A"

Article Synopsis
  • - The study examines how secondary genetic variants can influence the clinical features of individuals with primary disease-causing variants, suggesting that these modifiers play a significant role in disease expression.
  • - Specifically focusing on the 16p12.1 deletion, researchers identified various rare and common variants that predisposed individuals to specific developmental issues, such as neurological defects and microcephaly.
  • - By analyzing data from different cohorts, the findings indicate that the effects of primary and secondary variants on phenotype vary depending on the specific primary variant involved, highlighting the need for personalized approaches in treatment.
View Article and Find Full Text PDF

Implantable devices interfacing with peripheral nerves exhibit limited longevity and resolution. Poor nerve-electrode interface quality, invasive surgical placement and development of foreign body reaction combine to limit research and clinical application of these devices. Here, we develop cuff implants with a conformable design that achieve high-quality and stable interfacing with nerves in chronic implantation scenarios.

View Article and Find Full Text PDF

Since Dr. Theodor Schwann posed the extension of Cell Theory to mammals in 1839, scientists have dreamt up ways to interface with and influence the cells. Recently, considerable ground in this area is gained, particularly in the scope of bioelectronics.

View Article and Find Full Text PDF

Cochlear implants are a life-changing technology for those with severe sensorineural hearing loss, partially restoring hearing through direct electrical stimulation of the auditory nerve. However, they are known to elicit an immune response resulting in fibrotic tissue formation in the cochlea that is linked to residual hearing loss and suboptimal outcomes. Intracochlear fibrosis is difficult to track without postmortem histology, and no specific electrical marker for fibrosis exists.

View Article and Find Full Text PDF

Digestion is a fundamentally important process for an individual's life. However, the physical process of digestion is hidden inside the body, making it challenging to understand and a particularly difficult topic for students to learn in the classroom. Traditional approaches to teaching body processes include a mixture of textbook teaching and visual learning.

View Article and Find Full Text PDF

Bioelectronics hold the key for understanding and treating disease. However, achieving stable, long-term interfaces between electronics and the body remains a challenge. Implantation of a bioelectronic device typically initiates a foreign body response, which can limit long-term recording and stimulation efficacy.

View Article and Find Full Text PDF

We aimed to determine whether SNP-microarray genomic testing of saliva had a greater diagnostic yield than blood for pathogenic copy number variants (CNVs). We selected patients who underwent CMA testing of both blood and saliva from 23,289 blood and 21,857 saliva samples. Our cohort comprised 370 individuals who had testing of both, 224 with syndromic intellectual disability (ID) and 146 with isolated ID.

View Article and Find Full Text PDF

Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced.

View Article and Find Full Text PDF
Article Synopsis
  • - Childhood apraxia of speech (CAS) is a severe speech disorder linked to motor planning and genetic factors, with many cases involving specific gene mutations.
  • - In a study of 70 individuals with CAS, researchers used genome sequencing to identify damaging genetic variants, discovering high-confidence variants in 26% of participants and doubling the number of known candidate genes related to CAS.
  • - The findings highlight the significance of chromatin organization and gene regulation in CAS, suggest shared genetic risks with other neurodevelopmental disorders, and stress the importance of understanding these genetic causes for better diagnosis and treatment options.
View Article and Find Full Text PDF

3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC.

View Article and Find Full Text PDF

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the 2-hit model of genetic disease, previously associated with cancer, in relation to brain malformations causing epilepsy, focusing on the mTOR pathway.
  • Researchers analyzed genetic samples from two brothers with drug-resistant epilepsy and found a novel germline variant and a somatic variant in specific pathways related to cortical dysplasia.
  • These findings suggest a possible dual-pathway 2-hit model in cortical malformations, indicating the involvement of intersecting genetic signals and highlighting the need for further exploration in similar cases.
View Article and Find Full Text PDF

Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to systems. The advent of microfluidics and the considerable advances in reliability and complexity of models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing.

View Article and Find Full Text PDF

Articular cartilage is a collagen-rich tissue that provides a smooth, lubricated surface for joints and is also responsible for load bearing during movements. The major components of cartilage are water, collagen, and proteoglycans. Osteoarthritis is a degenerative disease of articular cartilage, in which an early-stage indicator is the loss of proteoglycans from the collagen matrix.

View Article and Find Full Text PDF

Recapitulating the collagen fiber structure of native menisci is one of the major challenges in the development of tissue-engineered menisci. Native collagen fibers are developed by the complex interplay of biochemical and biomechanical signals. In this study, we optimized glucose and transforming growth factor-β1 (TGF-β1) concentrations in combination with mechanical anchoring to balance contributions of proteoglycan synthesis and contractile behavior in collagen fiber assembly.

View Article and Find Full Text PDF

Background And Purpose: Hip fracture guidelines emphasize mobilization within 48 hours of surgery. The aims of this audit were to determine the proportion of patients with hip fracture who mobilize within 48 hours, identify factors associated with delayed mobilization, and identify barriers to mobilization.

Methods: Single-site prospective audit of 100 consecutive patients (age 82 ± 9 years) admitted for surgical management of hip fracture.

View Article and Find Full Text PDF

Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing.

View Article and Find Full Text PDF

Achieving lateral integration of articular cartilage repair tissue with surrounding native cartilage remains a clinical challenge. Histological and bulk mechanical studies have identified extracellular matrix components that correlate with superior failure strength, but it is unclear how local changes in geometry and composition at the repair interface affect tissue strains under physiologic loading. Here, we investigated the effects of local compositional and interface geometry on lateral cartilage repair integration by coupling microscale Raman spectroscopy and confocal elastography to measure tissue strains under compressive and shear loading.

View Article and Find Full Text PDF

Interfaces between soft tissue and bone are characterized by transitional gradients in composition and structure that mediate substantial changes in mechanical properties. For interfacial tissue engineering, scaffolds with mineral gradients have shown promise in controlling osteogenic behavior of seeded bone marrow stromal cells (bMSCs). Previously, we have demonstrated a 'top-down' method for creating monolithic bone-derived scaffolds with patterned mineral distributions similar to native tissue.

View Article and Find Full Text PDF

Objective: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS).

View Article and Find Full Text PDF

Recently, the scientific community has shown considerable interest in engineering tissues with organized compositional and structural gradients to mimic hard-to-soft tissue interfaces. This effort is hindered by an incomplete understanding of the construction of native tissue interfaces. In this work, we combined Raman microscopy and confocal elastography to map compositional, structural, and mechanical features across the stiff-to-compliant interface of the attachments of the meniscus in the knee.

View Article and Find Full Text PDF

Materials engineering can generally be divided into "bottom-up" and "top-down" approaches, where current state-of-the-art methodologies are bottom-up, relying on the advent of atomic-scale technologies. Applying bottom-up approaches to biological tissues is challenging due to the inherent complexity of these systems. Top-down methodologies provide many advantages over bottom-up approaches for biological tissues, given that some of the complexity is already built into the system.

View Article and Find Full Text PDF