Publications by authors named "Boyko S Atanassov"

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data.

View Article and Find Full Text PDF

Unlabelled: Cyclin D1 (CCND1) is a critical regulator of cell proliferation and its overexpression has been linked to the development and progression of several malignancies. CCND1 overexpression is recognized as a major mechanism of therapy resistance in several cancers; tumors that rely on CCND1 overexpression to evade cancer therapy are extremely sensitive to its ablation. Therefore, targeting CCND1 is a promising strategy for preventing tumor progression and combating therapy resistance in cancer patients.

View Article and Find Full Text PDF

In this issue of Cell Chemical Biology, Morgan et al. (2021) show that cyclic peptides can be potent and highly specific inhibitors for deubiquitinating enzymes. This study identifies the first selective inhibitors of the cancer-associated ubiquitin-specific protease 22 (USP22).

View Article and Find Full Text PDF

overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription.

View Article and Find Full Text PDF

Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR).

View Article and Find Full Text PDF

USP22, a component of the SAGA complex, is overexpressed in highly aggressive cancers, but the normal functions of this deubiquitinase are not well defined. We determined that loss of USP22 in mice results in embryonic lethality due to defects in extra-embryonic placental tissues and failure to establish proper vascular interactions with the maternal circulatory system. These phenotypes arise from abnormal gene expression patterns that reflect defective kinase signaling, including TGFβ and several receptor tyrosine kinase pathways.

View Article and Find Full Text PDF

In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability.

View Article and Find Full Text PDF

Decreased expression of the USP44 deubiquitinase has been associated with global increases in H2Bub1 levels during mouse embryonic stem cell (mESC) differentiation. However, whether USP44 directly deubiquitinates histone H2B or how its activity is targeted to chromatin is not known. We identified USP44 as an integral subunit of the nuclear receptor co-repressor (N-CoR) complex.

View Article and Find Full Text PDF

The SAGA complex contains two enzymatic modules, which house histone acetyltransferase (HAT) and deubiquitinase (DUB) activities. USP22 is the catalytic subunit of the DUB module, but two adaptor proteins, ATXN7L3 and ENY2, are necessary for DUB activity toward histone H2Bub1 and other substrates. ATXN7L3B shares 74% identity with the N-terminal region of ATXN7L3, but the functions of ATXN7L3B are not known.

View Article and Find Full Text PDF

Histone H2B monoubiquitination (H2Bub1) is centrally involved in gene regulation. The deubiquitination module (DUBm) of the SAGA complex is a major regulator of global H2Bub1 levels, and components of this DUBm are linked to both neurodegenerative diseases and cancer. Unexpectedly, we find that ablation of USP22, the enzymatic center of the DUBm, leads to a reduction, rather than an increase, in global H2bub1 levels.

View Article and Find Full Text PDF

Ubiquitin-specific protease 22 (USP22) edits the histone code by deubiquitinating H2A and H2B as part of the mammalian SAGA (Spt-Ada-Gcn5) complex, and is required for transcriptional regulation and normal cell-cycle progression. Here, we show that USP22 affects the expression of p21 by altering far upstream element (FUSE)-binding protein 1 (FBP1) ubiquitination, as ablation of USP22 leads to increased FBP1 ubiquitination and decreased FBP1 protein occupancy at the p21 gene. Surprisingly, increased polyubiquitination of FBP1 does not alter its protein stability, but instead modulates the stable recruitment of FBP1 to target loci.

View Article and Find Full Text PDF

Post-translational modifications of the histones are centrally involved in the regulation of all DNA-templated processes, including gene transcription, DNA replication, recombination, and repair. These modifications are often dynamic, and their removal is just as important as their addition in proper regulation of cellular functions. Although histone acetylation/deacetylation and histone methylation/demethylation are highly studied, the functions and regulation of histone ubiquitination and deubiquitination are less well understood.

View Article and Find Full Text PDF

Histone acetyltransferases (HATs) play important roles in gene regulation and DNA repair by influencing the accessibility of chromatin to transcription factors and repair proteins. Here, we show that deletion of Gcn5 leads to telomere dysfunction in mouse and human cells. Biochemical studies reveal that depletion of Gcn5 or ubiquitin-specific protease 22 (Usp22), which is another bona fide component of the Gcn5-containing SAGA complex, increases ubiquitination and turnover of TRF1, a primary component of the telomeric shelterin complex.

View Article and Find Full Text PDF

The establishment of oxidants as mediators of signal transduction has renewed the interest of investigators in oxidant production and metabolism. In particular, H(2)O(2) has been demonstrated to play pivotal roles in mediating cell differentiation, proliferation, and death. Intracellular concentrations of H(2)O(2) are modulated by its rate of production and its rate of decomposition by catalase and peroxidases.

View Article and Find Full Text PDF

The role of the region encoded by exon 27 of the Brca2 gene in DNA repair was studied in cells and tissues from Brca2Delta27/Delta27 mice. The COOH-terminal truncated Brca2 localized to the nucleus in primary mouse embryo fibroblasts from Brca2Delta27/Delta27 mice. Fluorescence-activated cell sorting (FACS) analysis demonstrated that these fibroblasts were hypersensitive to mitomycin C-induced cross-links, but not to double-strand breaks (DSBs) induced by irradiation.

View Article and Find Full Text PDF

We have developed fast, reliable and simple fluorescent method to assess and compare repair capacity of cells. To this end plasmid pEGFP containing the gene for the enhanced green fluorescent protein was damaged in vitro by genotoxic agents and introduced into cells by transfection. The repair capacity of the cells was determined from the number of fluorescent cells counted with a fluorescent microscope 24 h after transfection.

View Article and Find Full Text PDF