Photothermal therapy (PTT) has attracted extensive attention in disease treatments. However, conventional photothermal systems do not possess a temperature-control mechanism, which poses a serious risk to healthy tissues and/or organs due to inevitable thermal damage. Herein, a smart photothermal nanosystem with an intrinsic temperature-control mechanism for thermostatic treatment of bacterial infections is reported.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has attracted much attention in disease treatments. However, the exploration of a novel method for the construction of outstanding photosensitizers (PSs) with stimuli-responsiveness remains challenging. In this study, we, for the first time, report a novel and effective strategy to boost reactive oxygen species (ROS) generation by bridging donor-acceptor (D-A) type PSs with the azo group.
View Article and Find Full Text PDFThe maintenance of an intact membrane structure is of great importance for bacteria to execute various biological functions. However, chemical probes for monitoring the dynamic changes of bacterial membranes are barely reported. Herein, we, for the first time, report a novel polarity-sensitive probe for reflecting the packing degree of bacterial membrane lipids.
View Article and Find Full Text PDFSensing temperature at the subcellular level is of great importance for the understanding of miscellaneous biological processes. However, the development of sensitive and reliable organic fluorescent nanothermometers remains challenging. In this study, we report the fabrication of a novel organic fluorescent nanothermometer and study its application in temperature sensing.
View Article and Find Full Text PDFMetallic gold nanoparticles (Au NPs) with multilayer Au atoms are useful for plasmonic, chemical, medical, and metamaterial application. In this article, we report the opening of the bandgap in substrate-supported two-dimensional (2D) gold quantum dots (Au QDs) with monolayer Au atoms. Calculations based on density functional theory suggest that 2D Au QDs are energetically favorable over 3D Au clusters when coated on hexagonal boron nitride (BN) surfaces.
View Article and Find Full Text PDFTunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures.
View Article and Find Full Text PDFIrradiation-induced vacancy defects in multiwalled (MW) boron nitride nanotubes (BNNTs) are investigated via in situ high-resolution transmission electron microscope operated at 80 kV, with a homogeneous distribution of electron beam intensity. During the irradiation triangle-shaped vacancy defects are gradually generated in MW BNNTs under a mediate electron current density (30 A cm(-2)), by knocking the B atoms out. The vacancy defects grow along a well-defined direction within a wall at the early stage as a result of the curvature induced lattice strain, and then develop wall by wall.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
We demonstrate a universal approach to extract one- and two-dimensional nanomaterials from contaminated water, which is based on a microscopic oil-water interface trapping mechanism. Results indicate that carbon nanotubes, graphene, boron nitride nanotubes, boron nitride nanosheets, and zinc oxide nanowires can be successfully extracted from contaminated water at a successful rate of nearly 100%. The effects of surfactants, particle shape, and type of organic extraction fluids are evaluated.
View Article and Find Full Text PDFHigh electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches.
View Article and Find Full Text PDFClusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process.
View Article and Find Full Text PDFOne-dimensional arrays of gold quantum dots (QDs) on insulating boron nitride nanotubes (BNNTs) can form conduction channels of tunneling field-effect transistors. We demonstrate that tunneling currents can be modulated at room temperature by tuning the lengths of QD-BNNTs and the gate potentials. Our discovery will inspire the creative use of nanostructured metals and insulators for future electronic devices.
View Article and Find Full Text PDF